Author: Dr Irene Josa (University College London). The author would like to acknowledge Colin Church (IOM3) who provided valuable feedback during the development of this case.

Topic: Materials sourcing and circularity.

Engineering disciplines: Materials engineering; Manufacturing; Environmental engineering; Construction.

Ethical issues: Respect for the environment; Risk.

Professional situations: Conflicts of interest; Public health and safety; Legal implications; Whistleblowing; Power; Corporate social responsibility.

Educational level: Intermediate.

Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices.

 

Learning and teaching notes:

This case involves an engineer responsible for verifying the source of recycled construction material to ensure it is not contaminated. The case is presented in three parts. Part one focuses on the environmental, professional, and social contexts and may be used in isolation to allow students to explore both micro-ethical and macro-ethical concerns. Parts two and three bring in a dilemma about public information and communication and allows students to consider their positions and potential responses. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

NGOs:

Government site:

Business:

Journal articles:

Professional organisations:

 

Dilemma – Part one:

Charlie is a junior environmental engineer who started working at Circle Mat after graduating. Circle Mat is a construction products company that takes pride in using recycled materials from waste in their products, such as mortars and concretes. In fact, Circle Mat was recently nominated by the National Sustainability Association in the prize for the most innovative and sustainable production chains.

Charlie’s role is to ensure that the quality standards of the recycled waste used in the products are met. She is sent a report every two weeks from the factories receiving the waste and she checks the properties of this waste. While she is also supposed to visit all the factories once a month, her direct supervisor, Sam, advised her to visit only those factories where data shows that there are problems with the quality. While it is Charlie’s responsibility to verify the quality and to create the factory visit plan, she trusts her line manager as to how best approach her work.

Among all the factories with which they are working, the factory in Barretton has always had the highest quality standards, and since it is very far from where Charlie is based, she has postponed for months her visit to that factory.

 

Optional STOP for questions and activities:

1. Discussion: Charlie is responsible for checking the quality from the data she receives, but what about the quality/reliability of the data? Where does her responsibility begin and end? What ethical guidance, codes, or frameworks can help her decide?

2. Activity: Research the issue of asbestos, including current science, potential risks, and legal implications.

3. Discussion: Macroethical context – What is circularity, and how does it relate to climate goals or environmental practice?

  

Dilemma: Part two:

After several months, she finally goes to the town where the factory is located. Before getting to the factory, she stops for a coffee at the town’s café. There, she enquires of the waiter about the impacts of the factory on the town. The waiter expresses his satisfaction and explains that since Circle Mat started operations there, the town has become much more prosperous.

When Charlie reaches the factory, she notices a pile of waste that, she assumes, is the one that is being used as recycled aggregate in concrete. Having a closer look, she sees that it is waste from demolition of a building, with some insulation walls, concrete slabs and old pipes. At that moment, the head of the factory arrives and kindly shows Charlie around.

At the end of the visit, Charlie asks about the pile, and the head says that it is indeed demolition waste from an old industrial building. By the description, Charlie remembers that there are some buildings in the region that still contain asbestos, so asks whether the demolition material could potentially have asbestos. To Charlie’s surprise, the head reacts aggressively and says that the visit is over.

 

Optional STOP for questions and activities:

1. Activity: Use an environmental and social Life Cycle Assessment tool to assess the environmental and social impacts that the decision that Charlie makes might have.

2. Discussion: Map possible courses of action regarding the approach that Charlie could adopt when the factory head tries to shut down the visit. Discuss which is the best approach and why. Some starting questions would be: What should Charlie do? What feels wrong about this situation?

3. Discussion: if she reports her suspicions to her manager, what data or evidence can she present? Should she say anything at all at this point?

 

Dilemma – Part three:

In the end, Charlie decides not to mention anything, and after writing her report she leaves Barretton. A few days later, Circle Mat is announced to be the winner of the prize by the National Sustainability Association. Circle Mat organises a celebration event to be carried out in Barretton. During the event, Charlie discovers that Circle Mat’s CEO is a relative of the mayor of Barretton.

She is not sure if there really is asbestos in the waste, and also she does not know if other factories might be behaving in the same way. Nonetheless, other junior engineers are responsible for the other factories, so she doesn’t have access to the information.

Some days after the event, she receives a call from a journalist who says that they have discovered that the company is using waste from buildings that contain asbestos. The journalist is preparing an article to uncover the secret and wants to interview her. They ensure that, if she wants, her identity will be kept anonymous. They also mention that, if she refuses to participate, they will collect information from other sources in the company.

 

Optional STOP for questions and activities:

1. Activity: Technical integration related to measuring contaminants in waste products used for construction materials.

2. Discussion: What ethical issues can be identified in this scenario? Check how ethical principles of the construction sector inform the ethical issues that may be present, and the solutions that might be possible.

3. Discussion: What interpersonal and workplace dynamics might affect the approach taken to resolve this situation? 

4. Discussion: Would you and could you take the interview with the journalist? Should Charlie? Why or why not?

5. Activity: In the case of deciding to take the interview, prepare the notes you would take to the interview.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.


Author:
Wendy Attwell (Engineering Professors’ Council).

Topic: Balancing personal values and professional conduct in the climate emergency. 

Engineering disciplines: Civil engineering; Energy and Environmental engineering; Energy. 

Ethical issues: Respect for the environment; Justice; Accountability; Social responsibility; Risk; Sustainability; Health; Public good; Respect for the law; Future generations; Societal impact. 

Professional situations: Public health and safety; Communication; Law / Policy; Integrity; Legal implications; Personal/professional reputation. 

Educational level: Intermediate. 

Educational aim: Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way. 

 

Learning and teaching notes:  

This case study involves an engineer who has to weigh personal values against professional codes of conduct when acting in the wake of the climate crisis. This case study allows students to explore motivations and justifications for courses of action that could be considered morally right but legally wrong.  

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4  here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

Professional organisations: 

Educational institutions: 

Education and campaign groups: 

 News articles:  

 

Summary: 

Kelechi is a civil engineer in a stable job, working on the infrastructure team of a County Council that focuses on regeneration and public realm improvements. Kelechi grew up in an environment where climate change and its real impacts on people was discussed frequently. She was raised with the belief that she should live as ethically as possible, and encourage others to consider their impact on the world. These beliefs were instrumental in leading Kelechi into a career as a civil engineer, in the hope that she could use her skills and training to create a better world. In one of her engineering modules at university, Kelechi met Amanda, who encouraged her to join a student group pushing for sustainability within education and the workplace. Kelechi has had some success with this within her own job, as her employer has been willing to participate in ongoing discussions on carbon and resilience, and is open to implementing creative solutions.  

But Kelechi is becoming frustrated at the lack of larger scale change in the wake of the climate emergency. Over the years she has signed petitions and written to her representatives, then watched in dismay as each campaign failed to deliver real world carbon reduction, and as the government continued to issue new licenses for fossil fuel projects. Even her own employers have failed to engage with climate advocates pushing for further changes in local policy, changes that Kelechi believes are both achievable and necessary. Kelechi wonders what else she can do to set the UK – if not the world – on a path to net zero. 

 

Dilemma – Part one: 

Scrolling through a news website, Kelechi is surprised to see a photo of her friend and ex-colleague Amanda, in a report about climate protesters being arrested. Kelechi messages Amanda to check that she’s ok, and they get into a conversation about the protests. Amanda is part of a climate protest group of STEM professionals that engages in non-violent civil disobedience. The group believes that by staging direct action protests they can raise awareness of the climate emergency and ultimately effect systemic change.  

Amanda tries to convince Kelechi to join the group and protest with them. Amanda references the second principle of the Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering: “Respect for life, law, the environment and public good.” Amanda believes that it is ok to ignore the tenet about respect for the law in an effort to safeguard the other three, and says that there have been plenty of unjust laws throughout history that have needed to be protested in order for them to be changed for the public good. She also references another part of the Statement: that engineers should ”maximise the public good and minimise both actual and potential adverse effects for their own and succeeding generations”. Amanda believes that by protesting she is actually fulfilling her duty to uphold these principles.  

Kelechi isn’t sure. She has never knowingly broken the law before, and is worried about being arrested. Kelechi consults her friend Max, who is a director of a professional engineering institution, of which Kelechi is a member. Max, whilst she has some sympathies for the aims of the group, immediately warns Kelechi away from the protests. “Forget about being arrested; you could lose your job and end your career.”  

 

Optional STOP for questions and activities: 

1. Discussion: What personal values will Kelechi have to weigh in order to decide whether or not to take part in a civil disobedience protest? 

2. Discussion: Consider the tenet of the Statement of Ethical Principles “Respect for life, law, the environment and public good.” To what extent (if at all) do the four tenets of this ethical principle come into conflict with one another in this situation? Can you think of other professional situations in which they might conflict? 

3. Discussion: Is breaking the law always unethical? Are there circumstances when breaking the law might be the ethical thing to do in the context of engineering practice? What might these circumstances be? 

4. Discussion: To what extent (if at all) does the content of the Statement of Ethical Principles make a case for or against being part of a protest where the law is broken?  

5. Discussion: Following on from the previous question – does it make a difference what is being protested, if a law is broken? For example, is protesting fossil fuels that lead to climate change different from protesting unsafe but legal building practices, such as cladding that causes a fire risk? Why? 

6. Activity: Research other professional codes of engineering: do these have clear guidelines for this situation? Assemble a bibliography of other professional codes or standards that might be relevant to this scenario. 

7. Discussion: What are the potential personal and professional risks or benefits for Kelechi if she takes part in a protest where the law is broken? 

8. Discussion: From a professional viewpoint, should Kelechi take part in the protest? What about from a personal viewpoint? 

 

Dilemma – Part two: 

After much deliberation, Kelechi decides to join the STEM protest group. Her first protest is part of a direct action to blockade a busy London bridge. To her own surprise, she finds herself volunteering to be one of two protesters who will climb the cables of the bridge. She is reassured by the risk assessment undertaken by the group before selecting her. She has climbing experience (although only from her local leisure centre), and safety equipment is provided.  

On the day of the protest, Kelechi scales the bridge. The police are called and the press arrive. Kelechi stays suspended from the bridge for 36 hours, during which time all traffic waiting to cross the bridge is halted or diverted. Eventually, Kelechi is convinced that she should climb down, and the police arrest all of the protesters.  

Later on, Kelechi is contacted by members of the press, asking for a statement about her reason for taking part in the protest. Kelechi has seen that press coverage of the protest is so far overwhelmingly negative, and poll results suggest that the majority of the public see the protesters’ actions as selfish, inconvenient, and potentially dangerous, although some have sympathy for their cause. “What if someone died because an ambulance couldn’t use the bridge?” asks someone via social media. “What about the five million deaths a year already caused by climate change?” asks another, citing a recent news article 

Kelechi would like to take the opportunity to make her voice heard – after all, that’s why she joined the protest group – but she isn’t sure whether she should mention her profession. Would it add credibility to her views? Or would she be lambasted because of it? 

 

Optional STOP for questions and activities: 

1. Discussion: What professional principles or codes is Kelechi breaking or upholding by scaling the bridge?  

2. Activity: Compare the professional and ethical codes for civil engineers in the UK and elsewhere. How might they differ in their guidance for an engineer in this situation?  

3. Activity: Conduct a risk assessment for a) the protesters who have chosen to be part of this scenario, and b) members of the public who are incidentally part of this scenario. 

4. Discussion: Who would be responsible if, as a direct or indirect result of the protesters blocking the bridge, a) a member of the public died, or b) a protester died? Who is responsible for the excess deaths caused directly or indirectly by climate change? 

5. Discussion: How can Kelechi best convey to the press and public the quantitative difference between the short-term disruption caused by protests and the long-term disruption caused by climate change? 

6. Discussion: Should Kelechi give a statement to the press? If so, should she discuss her profession? What would you do in her situation? 

7. Activity: Write a statement for Kelechi to release to the press. 

8. Discussion: Suggest alternative ways of protesting that would have as much impact in the news but potentially cause less disruption to the public. 

 

Dilemma – Part three: 

Kelechi decides to speak to the press. She talks about the STEM protest group, and she specifically cites the Statement of Ethical Principles as her reason for taking part in the protest: “As a professional civil engineer, I have committed to acting within our code of ethics, which requires that I have respect for life, the environment and public good. I will not just watch lives be destroyed if I can make a difference with my actions.”  

Whilst her statement gets lots of press coverage, Kelechi is called out by the media and the public because of her profession. The professional engineering institution of which Kelechi is a member receives several complaints about her actions, some from members of the public and some from other members of the institution. “She’s bringing the civil engineering profession into disrepute,” says one complaint. “She’s endangering the public,” says another. 

It’s clear that the institution must issue a press release on the situation, and it falls to Kelechi’s friend Max, as a director of the institution, to decide what kind of statement to put out, and to recommend whether Kelechi’s membership of the institution could – or should – be revoked. Max looks closely at the institution’s Code of Professional Conduct. One part of the Code says that “Members should do nothing that in any way could diminish the high standing of the profession. This includes any aspect of a member’s personal conduct which could have a negative impact upon the profession.” Another part of the Code says: “All members shall have full regard for the public interest, particularly in relation to matters of health and safety, and in relation to the well-being of future generations.” 

As well as the institution’s Code of Conduct, Max considers the historic impact of civil resistance in achieving change, and how those engaging in such protests – such as the suffragettes in the early 1900s – could be viewed negatively at the time, whilst later being lauded for their efforts. Max wonders at what point the tide of public opinion begins to turn, and what causes this change. She knows that she has to consider the potential impacts of the statement that she puts out in the press release; how it might affect not just her friend, but the institution’s members, other potential protesters, and also her own career.  

 

Optional STOP for questions and activities: 

1. Discussion: Historically, has civil resistance been instrumental or incidental in achieving systemic change? Research to find out if and when engineers have been involved in civil resistance in the past. 

2. Discussion: Could Kelechi’s actions, and the results of her actions, be interpreted as having “a negative impact on the profession”? 

3. Discussion: Looking at Kelechi’s actions, and the institution’s code of conduct, should Max recommend that Kelechi’s membership be revoked? 

4. Discussion: Which parts of the quoted code of conduct could Max emphasise or omit in her press release, and how might this affect the tone of her statement and how it could be interpreted? 

5. Activity: Debate which position Max should take in her press release: condemning the actions of the protesters as being against the institution’s code of conduct; condoning the actions as being within the code of conduct; remaining as neutral as possible in her statement. 

6. Discussion: What are the wider impacts of Max’s decision to either remain neutral, or to stand with or against Kelechi in her actions?  

7. Activity: Write a press release for the institution, taking one of the above positions. 

8. Discussion: Which other authorities or professional bodies might be impacted by Max’s decision? 

9. Discussion: What are the potential impacts of Max’s press release on the following stakeholders, and what decisions or actions might they take because of it? Kelechi; Kelechi’s employer; members of the STEM protest group; the institution; institution members; government policymakers; the media; the public; the police; fossil fuel businesses; Max’s employers; Max herself. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Dr J.L. Rowlandson (University of Bristol).

Topic: Home heating in the energy transition. 

Engineering disciplines: Chemical; Civil; Mechanical; Energy. 

Ethical issues: Sustainability; Social responsibility. 

Professional situations: Public health and safety; Conflicts of interest; Quality of work; Conflicts with leadership/management; Legal implication. 

Educational level: Intermediate. 

Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others. 

 

Learning and teaching notes: 

This case study considers not only the environmental impacts of a clean technology (the heat pump) but also the social and economic impacts on the end user. Heat pumps form an important part of the UK government’s net-zero plan. Our technical knowledge of heat pump performance can be combined with the practical aspects of implementing and using this technology. However, students need to weigh the potential carbon savings against the potential economic impact on the end user, and consider whether current policy incentivises consumers to move towards clean heating technologies.  

This case study offers students an opportunity to practise and improve their skills in making estimates and assumptions. It also enables students to learn and practise the fundamentals of energy pricing and link this to the increasing issue of fuel poverty. Fundamental thermodynamics concepts, such as the second law, can also be integrated into this study.  

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in six parts. If desired, a teacher can use the Summary and Part one in isolation, but Parts two to six develop and complicate the concepts presented in the Summary and Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

Open access textbooks: 

Journal articles: 

Educational institutions: 

Business: 

Government reports: 

Other organisations: 

Stakeholder mapping: 

 

Summary – Heating systems and building requirements: 

You are an engineering consultant working for a commercial heat pump company. The company handles both the manufacture and installation of heat pumps. You have been called in by a county council to advise and support a project to decarbonise both new and existing housing stock. This includes changes to social housing (either directly under the remit of the council or by working in partnership with a local housing association) and also to private housing, encouraging homeowners and landlords to move towards net zero emissions. In particular, the council is interested in the installation of clean heating technologies with a focus on heat pumps, which it views as the most technologically-ready solution. Currently most heating systems rely on burning natural gas in a boiler to provide heat. By contrast, a heat-pump is a device that uses electricity to extract heat from the air or ground and transfer it to the home, avoiding direct emission of carbon dioxide.  

The council sets your first task of the project as assessing the feasibility of replacing the existing gas boiler systems with heat pumps in social housing. You are aware that there are multiple stakeholders involved in this process you need to consider, in addition to evaluating the suitability of the housing stock for heat pump installation.  

 

Optional STOP for questions and activities: 

1. Discussion: Why might the council have prioritised retrofitting the social housing stock with heat pumps as the first task of the project? How might business and ethical concerns affect this decision?  

2. Activity: Use stakeholder mapping to determine who are the main stakeholders in this project and what are their main priorities? In which areas will these stakeholders have agreements or disagreements? What might their values be, and how do those inform priorities?  

3. Discussion: What key information about the property is important for choosing a heating system? What does the word feasibility mean and how would you define it for this project? 

4. Activity: Research the Energy Performance Certificate (EPC):  what are the main factors that determine the energy performance of a building?  

5. Discussion: What do you consider to be an ‘acceptable’ EPC rating? Is the EPC rating a suitable measure of energy efficiency? Who should decide, and how should the rating be determined?  

 

Technical pre-reading for Part one: 

It is useful to introduce the thermodynamic principles on which heat pumps operate in order to better understand the advantages and limitations when applying this engineering technology in a real-world situation. A heat pump receives heat (from the air, ground, or water) and work (in the form of electricity to a compressor) and then outputs the heat to a hot reservoir (the building you are heating). We recommend covering: 

An online, open-source textbook that covers both topics is Applications of Thermodynamics – Heat Pumps & Refrigerators. 

 

Dilemma – Part one – Considering heat pump suitability: 

You have determined who the main stakeholders are and how to define the project feasibility. A previous investigation commissioned by the council into the existing housing stock, and one of the key drivers for them to initiate this project, has led them to believe that most properties will not require significant retrofitting to make them suitable for heat pump installation.  

 

Optional STOP for question and activities: 

1. Activity: Research how a conventional gas boiler central heating system works. How does a heat pump heating system differ? What heat pump technologies are available? What are the design considerations for installing a heat pump in an existing building? 

 

Dilemma – Part two – Inconsistencies: 

You spot some inconsistencies in the original investigation that appear to have been overlooked. On your own initiative, you decide to perform a more thorough investigation into the existing housing stock within the local authority. Your findings show that most of the dwellings were built before 1980 and less than half have an EPC rating of C or higher. The poor energy efficiency of the existing housing stock causes a potential conflict of interest for you: there are a significant number of properties that would require additional retrofitting to ensure they are suitable for heat pump installation. Revealing this information to the council at this early stage could cause them to pull out of the project entirely, causing your company to lose a significant client. You present these findings to your line manager who wants to suppress this information until the company has a formal contract in place with the council.  

 

Optional STOP for question and activities: 

1. Discussion: How should you respond to your line manager? Is there anyone else you can go to for advice? Do you have an obligation to reveal this information to your client (the council) when it is they who overlooked information and misinterpreted the original study? 

2. Activity: An example of a factor that causes a poor EPC rating is how quickly the property loses heat. A common method for significantly reducing heat loss in a home is to improve the insulation. Estimate the annual running cost of using an air-source heat pump in a poorly-insulated versus a well-insulated home to look at the potential financial impact for the tenant (example approach shown in the Appendix, Task A). 

3. Discussion: What recommendations would you make to the council to ensure the housing is heat-pump ready? Would your recommendation change for a new-build property? 

 

Dilemma – Part three – Impact of energy costs on the consumer: 

Your housing stock report was ultimately released to the council and they have decided to proceed, though for a more limited number of properties. The tenants of these dwellings are important stakeholders who are ultimately responsible for the energy costs of their properties. A fuel bill is made up of the wholesale cost of energy, network costs to transport it, operating costs, taxes, and green levies. Consumers pay per unit of energy used (called the unit cost) and also a daily fixed charge that covers the cost of delivering energy to a home regardless of the amount of energy used (called the standing charge). In the UK, currently the price of natural gas is the main driver behind the price of electricity; the unit price of electricity is typically three to four times the price of gas. 

Your next task is to consider if replacing the gas boiler in a property with a heat pump system will have a positive or negative effect on the running costs.  

 

Optional STOP for questions and activities: 

1. Activity: Estimate the annual running cost for a property when using a heat pump versus a natural gas boiler (see Appendix Task B for an example approach). 

2. Discussion: Energy prices are currently rising and have seen drastic changes in the UK over the past year. The lifetime of a new heat pump system is around 20 years. How would rising gas and electric prices affect the tenant? Does this impact the feasibility of using a gas boiler versus a heat pump? How can engineering knowledge and expertise help inform pricing policies? 

 

Dilemma – Part four – Tenants voice concerns: 

After a consultation, some of the current tenants whose homes are under consideration for heat pump installation have voiced concerns. The council is planning to install air-source heat pumps due to their reduced capital cost compared to a ground-source heat pump. The tenants are concerned that the heat pump will not significantly reduce their fuel bills in the winter months (when it is most needed) and instead could increase their bills if the unit price and standing charge for electricity continue to increase. They want a guarantee from the council that their energy bills will not be adversely affected. 

 

Optional STOP for questions and activities: 

1. Discussion: Why would air-source heat pumps be less effective in winter? What are the potential effects of increased energy bills on the tenants? How much input should the tenants have on the heating system in their rented property? 

2. Discussion: Do the council have any responsibility if the installation does result in an increased energy bill in the winter for their tenants? Do you and your company have any responsibility to the tenants?  

 

Dilemma – Part five – The council consultation: 

The council has hosted an open consultation for private homeowners within the area that you are involved in. They want to encourage owners of private dwellings to adopt low-carbon technologies and are interested in learning about the barriers faced and what they can do to encourage the adoption of low carbon-heating technologies. The ownership of houses in the local area is similar to the overall UK demographic: around 20% of dwellings are in the social sector (owned either by the local authority or a housing association), 65% are privately owned, and 15% are privately rented.  

 

Optional STOP for questions and activities: 

1. Activity: Estimate the lifetime cost of running an air-source heat pump and ground-source heat pump versus a natural gas boiler. Include the infrastructure costs associated with installation of the heating system (see Appendix Task C for an example approach). This can be extended to include the impact of increasing energy prices.  

2. Activity: Research the policies, grants, levies, and schemes available at local and national levels that aim to encourage uptake of net zero heating. 

3. Discussion: From your estimations and research, how suitable are the current schemes? What recommendations would you make to improve the uptake of zero carbon heating? 

 

Dilemma – Part six – Recommendations: 

Energy costs and legislation are important drivers for encouraging homeowners and landlords to adopt clean heating technologies. There is a need to weigh up potential cost savings with the capital cost associated with installing a new heat system. Local and national policies, grants, levies, and bursaries are examples of tools used to fund and support adoption of renewable technologies. Currently, an environmental and social obligations cost, known as the ‘green levies,’ are added to energy bills which contribute to a mixture of social and environmental energy policies (including, for example, renewable energy projects, discounts for low-income households, and energy efficiency improvements).  

Your final task is to think more broadly on encouraging the uptake of low-carbon heating systems in private dwellings (the majority of housing in the UK) and to make recommendations on how both councils locally and the government nationally can encourage uptake in order to reduce carbon emissions.  

 

Optional STOP for questions and activities: 

1. Discussion: In terms of green energy policy, where does the ethical responsibility lie –  with the consumer, the local government, or the national government?  

2. Discussion: Should the national Government set policies like the green levy that benefit the climate in the long-term but increase the cost of energy now?  

3. Discussion: As an employee of a private company, to what extent is the decarbonisation of the UK your problem? Do you or your company have a responsibility to become involved in policy? What are the advantages or disadvantages to yourself as an engineer?  

 

Appendix: 

The three tasks that follow are designed to encourage students to practise and improve their zeroth order approximation skills (for example a back of the envelope calculation). Many simplifying assumptions can be made but they should be justified.  

Task A: Impact of insulation 

Challenge: Estimate the annual running cost for an air-source heat pump in a poorly insulated home. Compare to a well-insulated home.  

Base assumptions around the heat pump system and the property being heated can be researched by the student as a task or given to them. In this example we assume:  

Example estimation: 

1. Estimate the overall heat loss for a poorly- and well-insulated property.

Note: heat loss is greater in the poorly insulated building.

 

 2. Calculate the work input for the heat pump.  

Assumption: heat pump matches the heat loss to maintain a consistent temperature.

 Note: a higher work input is required in the poorly insulated building to maintain a stable temperature.

 

3. Determine the work input over a year. 

Assumption: heat pump runs for 8 hours per day for 365 days.

 

4. Determine the running cost 

For an electricity unit price of 33.8 p per kWh.

 

Note: running cost is higher for the poorly insulated building due to the higher work input required to maintain temperature. 

 

Task B: Annual running cost estimation 

Challenge: Estimate the annual running cost for a property when using a heat pump versus a natural gas boiler.  

Base assumptions around the boiler system, heat pump system, and property can be researched by the student as a task or given to them. In this example we assume: 

Energy tariffs (correct at time of writing) for the domestic consumer including the energy price guarantee discount: 

Domestic energy tariffs 
Electric standing charge  51.0p per day 
Unit price of electricity  33.8p per kWh 
Gas standing charge  26.8p per kWh 
Unit price of gas  10.4p per kWh 

 

Example estimation: 

1. Calculate the annual power requirement for each case. 

Assumed heating requirement is 15,000 kWh for the year. 

2. Calculate the annual cost for each case: 

Note: the higher COP of the ground-source heat pump makes this the more favourable option (dependent on the fuel prices).  

 

Task C: Lifetime cost estimation  

Challenge: Estimate the total lifetime cost for a property when using a heat pump versus a natural gas boiler.  

Base assumptions around the boiler system, heat pump system, and property can be researched by the student as a task or given to them. In this example we assume: 

Energy tariffs (correct at time of writing) for the domestic consumer including the energy price guarantee discount: 

Domestic energy tariffs 
Electric standing charge  51.0p per day 
Unit price of electricity  33.8p per kWh 
Gas standing charge  26.8p per kWh 
Unit price of gas  10.4p per kWh 

 

1. Calculate the lifetime running cost for each case.

 

2. Calculate the total lifetime cost for each case.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case enhancement: Industrial pollution from an ageing pipeline

Activity: Prompts to facilitate discussion activities.

Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

 

Overview:

There are several points in this case during which an educator can facilitate a class discussion about relevant issues. Below are prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.

 

Case Summary – Discussion prompts:

1. Professional Contexts. The question listed in the case study is meant to elicit students’ consideration of working as an engineer in a professional culture different from the one they are familiar with. To answer this question, educators could have students reflect quietly and make notes for a few minutes, or discuss with a partner before sharing with the class. If students are hesitant to engage in questions of cultural differences, they could be prompted to examine why they have that discomfort. Educators might also want to prepare for conversations like this by reviewing the guidance article Tackling tough topics in discussion.

2. Meeting Preparation. The question listed in the case study focuses on the choices that engineers make when presenting data; that is, should they show managers a complete or incomplete picture of the situation in question? What implications does that have in terms of managers’ ability to make decisions? The question also is meant to help students consider aspects of professional communication. Students could be tasked with actually doing a version of the meeting preparation as pairs in the classroom, or they could do this as a reflective exercise as well.

 

Dilemma – Part one – Discussion prompts:

1. Personal and Professional Responsibility. Here, students are being asked to explore their own personal responses to the informal housing situation outside the factory and interrogate whether or not that response could or should affect their professional actions. The question also investigates the scope of professional responsibility, and at what point an engineer has fulfilled this or fallen short. To engage students in this discussion, educators could split the class in half, with half the room discussing the position that Yasin does NOT have a responsibility, and why; and the other half discussing the position that Yasin DOES have a responsibility and why. Alternatively, students could be asked to write down their own answer to this question along with reasoning why or why not, and then the educator could ask volunteers to share responses in order to open up the discussion.

2. Economic Contexts. Students can use this question to expand on question 1 of this section, and in fact they may already have drawn cost into their reasoning. One way to open up this discussion is to think of the broader costs, meaning: is there a social or environmental cost that the company externalises through its polluting activities? Another way into the question is to go back to the question of responsibility, because engineers are routinely responsible for making budgets and judgements related to costs. Through this financial activity, are they able to advocate for more ethical practices, and should they?

 

Dilemma – Part two – Discussion prompts

1. Job Offer. This question is meant to point to the issue of bribery, and have students wrestle with the situations presented in the case. Educators could have students review various definitions of bribery, including the one in the RAEng’s Statement of Ethical Principles. They could compare this with the Engineering Council of India’s Code of Ethics. What do these two codes say about Yasin’s case? If they don’t give clear guidance, what should Yasin do? Students could discuss why or why not they think this is bribery in small or large groups, and could debate what Yasin’s action should be and why.

2. External Reporting. This question addresses whistleblowing, and what responsibilities engineers have for reporting unethical actions to professional or legal entities. Students could be asked individually to answer the question and give reasons why, based on the codes of ethics relevant to the case. They could also answer the question based on their own personal values. Then they could discuss their responses in small groups and interrogate whether or not the codes conflict with their values. Educators could at this point raise the question of whether or not there may be different cultural expectations in this area that Yasin might have to navigate, and if so, if this should make any difference to the action he should take. Students could also be asked to chart out the personal and professional repercussions Yasin could experience for either action. This discussion could be good preparation for activity #5, the debate.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Diana Martin (Eindhoven University of Technology); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Topic:  Participatory approaches for engaging with a local community about the development of risky technologies. 

Engineering disciplines: Nuclear engineering; Energy; Chemical engineering. 

Ethical issues: Corporate Social Responsibility; Risk; Accountability; Respect for the Environment. 

Professional situations: Conflicts of interest; Public health and safety; Communication. 

Educational level: Advanced.  

Educational aim: Engaging in ethical judgement: reaching moral decisions and providing the rationale for those decisions.  

 

Learning and teaching notes:  

This case study involves an early career engineer tasked with leading the development of plans for the construction of the first nuclear plant in a region. The case can be customised by instructors when specifying the name of the region, as to whether the location of the case study corresponds to the location of the educational institution or if a more remote context is preferred. The case incorporates several components, including stakeholder mapping, participatory methods for assessing risk perception and community engagement, qualitative risk analysis, and policy-making.  

The case study asks students to identify and define an open-ended risk problem in engineering and develop a socially acceptable solution, on the basis of limited and possibly contradictory information and differing perspectives. Additionally, students can gain awareness of broader responsibilities of engineers in the development of risky technologies, as well as the role of engineers in public debates and community engagement related to the adoption or development of risky technologies. 

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Part two and Part three develop and complicate the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

 Learners have the opportunity to: 

Teachers have the opportunity to:  

 

Learning and teaching resources: 

Journal articles: 

Community engagement organisations: 

 

Dilemma – Part one:

You are an early career engineer working in the civil nuclear industry for Ultra Nuclear. This is a major company overseeing the construction of new power stations that has a strong reputation as a leader in the field with no controversies associated with its activity. Indeed, you have been impressed with Ultra Nuclear’s vision that the transition to using more nuclear energy can significantly reduce carbon emissions, and their development of next-generation nuclear technologies. After two years of working on the strictly technical side of the business, you have been promoted to a project manager role which requires you to do more public engagement. Your manager has assigned your first major project which involves making the plans for the development of a new power plant.  

 

Optional STOP for questions and activities: 

1. Activity: Societal context – What is the context in which Ultra Nuclear operates? Identify the national and supranational policies and regulation in your country related to the adoption of nuclear energy. Reflect on the broader rationale given for the adoption of nuclear energy. Research the history of nuclear technological developments (including opposition and failures) in your country. When tracing the context, you may consider:

2. Discussion: Personal values – What is your initial position on the adoption of nuclear energy? What are the advantages and disadvantages that you see for the adoption of nuclear energy in your country? What alternatives to nuclear energy do you deem more suitable and why?

3. Discussion: Risk perception – How do you perceive the risk of nuclear energy? How do your family and friends see this risk? How is nuclear energy portrayed in the media? Do you see any differences in how people around you see these risks? Why do you think this is so?

4. Activity: Risk mapping – Using a qualitative risk matrix, map the risks of a nuclear power plant.

 

Dilemma – Part two:

As it happens, this will be the first power plant established in the region where you were born, and your manager counts on your knowledge of the local community in addition to your technical expertise. To complete your project successfully, you are expected to ensure community approval for the new nuclear power plant. In order to do this, you will have to do some research to understand different stakeholders and their positions.  

 

Optional STOP for questions and activities:

1. Activity: Stakeholder mapping – Who are all the groups that are involved in the scenario? 

1.a. Activity: Read the article by Sven Ove Hansson, which puts forward a method for categorising stakeholders as risk-exposed, beneficiaries, or decision-makers (including overlaps of the three categories). Place each stakeholder group in one of these categories.

1.b. Discussion: Why are some groups risk-exposed, others beneficiaries, and others decision-makers? Why is it undesirable to have stakeholder groups solely in one of the categories? 

1.c. Discussion: What needs to change for some stakeholder groups to be not only in the category of risk-exposed, but also in the category of beneficiaries or decision-makers?  

2. Activity: Stakeholder mapping – How does each stakeholder group view nuclear energy? For each stakeholder group identified, research the arguments they put forward, their positions and preferences in regard to the adoption of nuclear energy. In addition to the stakeholder groups previously identified, you may consider:

For your research, you may consult the webpage of the stakeholder group (if it exists); any manifesto they present; mass media features (including interviews, podcasts, news items or editorials); flyers and posters. 

3. Discussion: How convincing are these arguments according to you? Do you see any contradictions between the arguments put forward by different groups? 

3.a. Discussion: Which group relies most on empirical data when presenting their position? Which stakeholders take the most extreme positions, according to you (radical either against or for nuclear energy), and why do you think this is so?  

3.b. Discussion: In groups of five students, rank the stakeholders from those that provide the most convincing to the least convincing arguments, then discuss these rankings in plenary. 

3.c. Roleplay (with students divided into groups): Each group is assigned a stakeholder, and gets to prepare and make the case for why their group is right, based on the empirical data and position put forward publicly by the group. The other groups grade on different criteria for how convincing the group is (such as 1. reliability of data, 2. rhetoric, 3. soundness of argument). 

4. Guest speaker activity: The instructor can invite as a guest speaker a representative of one of the stakeholder groups to talk with students about the theme of nuclear energy. Students can prepare a written reflection after the session on the topic of “What I learned about risks from the guest speaker” or “What I learned about my responsibility as a future engineer in regard to the adoption of nuclear energy.” 

 

Dilemma – Part three:

You arrive at the site of the intended power plant. You are received with mixed emotions. Although you are well liked and have many friends and relatives here, you are also warned that some residents are against the plans for the development of nuclear energy in the area. Several people with whom you’ve had informal chats have significant concerns about the power plant, and whether their health or safety will be negatively affected. At the same time, many people from the surrounding area do not yet know anything about the plans for building the nuclear site. In addition, in the immediate vicinity of the power plant site, the community hosts a small number of refugees who, having just arrived, are yet to be proficient in the language, and whose communication relies mostly on a translator. How will you ensure that this community is well informed of the plans for developing the power plant in their region and approves the plans of Ultra Nuclear? How will you engage with the community and towards what aims? 

 

Optional STOP for questions and activities: 

1. Activity: Research empirical data on the risk awareness and risk perception of public attitudes about nuclear energy, and sum up any findings that you find interesting or relevant for the case study. 

1.a. Discussion: According to you, is risk awareness and perception the same thing? How do they differ as concepts? Considering the research you just did, is there a relation between people’s risk awareness and perception? What does this imply? 

1.b Discussion: Do you identify any differences in the risk perception of the public (based on gender, age, geographical location, educational level)? Why do you think this is so?  

1.c. Discussion: Does the public see the same risks about nuclear energy as technical experts do? Why is this so? 

1.d. Activity: Read Sheila Jasanoff – The political science of risk perception. What is the key takeaway message for you?

2. Group activity: Compose a survey to understand the risk awareness and risk perception of members of the local community.

2.a. Discussion: What are the key questions for the survey? 

2.b. Discussion: How will you distribute the survey and to how many people? 

2.c. Discussion: Do you need to make any special arrangements to ensure that the views of all relevant groups are represented in the survey? 

2.d. Discussion: How will you use the data from the survey and how do you plan to follow-up on the survey?

3. Group activity: Develop a method for engaging with the community in the stages of developing and operating the nuclear plant.

3.a. Discussion: What values and principles do you highlight by engaging with the community? 

3.b. Discussion: How do you choose which participatory methods to use? 

You can use the following resources: Participation toolkit  or Performing Participatory Foresight Methods, Mazzurco and Jesiek, Bertrand, Pirtle and Tomblin. 

 

Annex:  

Localised case study: The development of Nuclear Energy in Ireland. 

Context description: Wikipedia entry for Nuclear power in Ireland and the Carnsore Point protests. 

Summary: 

The entire island of Ireland, comprising The Republic of Ireland and Northern Ireland (part of the UK), has never produced any electricity from nuclear power stations. Previous plans have been opposed as early as the 1970s through large public rallies, concerts, and demonstrations against the production of nuclear energy on the island. At the time, Carnsore Point was proposed as a site for the development of four nuclear reactors by the Electricity Supply Board. Public opposition led to the cancelling of this nuclear project and its replacement with a coal burning power station at Moneypoint. Since the 2000s there has been a renewed interest in the possibilities for producing nuclear energy on the island, in response to climate change and the need to ensure energy security. Surveys for identifying public acceptance and national forums have been proposed as ways to identify current perceptions and prospects for the development of nuclear energy. Nevertheless, nuclear energy in the Republic of Ireland is still prohibited by law, through the Electricity Regulation Act (1999). Nuclear energy is currently a contentious topic of debate, with many involved parties holding varying positions and arguments. 

Example of stakeholders: The Irish government; the UK government; political parties; electricity supply board (state owned electricity company); BENE – Better Environment with Nuclear Energy (lobby group); Friends of the Irish Environment (environmental group), Friends of the Earth – Ireland (environmental group); The Union of Concerned Scientists; Wind Aware (lobby group); local community (specified further based on demographic characteristics, such as the Traveller community); scientists in the National Centre for Plasma Science & Technology at Dublin City University (university researchers). 

Sources used for the description of the roles: Policy documents; official websites; institutional or group manifestos; news articles, editorials and other appearances in the media. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Mr Neil Rogers (Independent Scholar); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Topic: Suitable technology for developing countries. 

Engineering disciplines: Mechanical engineering; Electrical engineering; Energy. 

Ethical issues: Sustainability; Honesty; Integrity; Public good. 

Professional situations: Communication; Bribery; Working cultures; Honesty; Transparency. 

Educational level: Advanced. 

Educational aim: Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way. 

 

Learning and teaching notes: 

This case study requires a newly appointed engineer to make a decision about whether or not to sell unsuitable equipment to a developing country. Situated in Ghana, the engineer must weigh perspectives on environmental ethics that may differ from those informed by a different cultural background, as well as navigate unfamiliar workplace expectations. 

The engineer’s own job security is also at stake, which may complicate decision-making. As a result, this case has several layers of relations and potential value-conflicts. These include values that underlie assumptions held about honesty, integrity, the environment and its connection to human life and services. 

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

This case study is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities as desired.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

Educational institutions: 

Journal articles: 

Professional organisations: 

News articles: 

NGOs: 

 

Pre-reading: 

To prepare for activities related to environmental ethics, teachers may want to read, or assign students to pre-read, the academic articles found in the resource list: ‘Environmental ethics: An overview’ or ‘Mean or Green: Which values can promote stable pro-environmental behaviour?’ 

 

Dilemma – Part one: 

You have just graduated from university as a mechanical engineer and you are starting your first job as a sales engineer for JCD Engineering, a company that designs and manufactures pumping equipment. JCD has recently expanded operations in sub-Saharan Africa and you took the job because you were excited for the opportunity to travel and work in a country and culture different from your own.  

For your first project, you have been asked to put together quite a large bid for a water pumping aid project for some farms in northern Ghana. It just so happens that there is a trade show being held in Accra, so your manager has suggested you attend the show with a colleague to help on the company stand and combine this with a site visit to where the pumping equipment is to be installed. A representative from the aid organisation agrees to drive you to where the project will be sited before the trade show takes place. 

On arrival in Ghana, you are met by the rep to take you on your journey up country. This is your first visit to a developing country; you are excited, a little apprehensive and quite surprised by disorganisation at the airport, poor infrastructure, and obvious poverty in the villages up country. Still, you immediately see the difference that water pump installation could make to improve quality of life in villages. After two days of travelling, you eventually arrive at the village where the project JCD is bidding on will be situated. You are surprised to hear that the aid rep is quite cynical about engineering aid projects from the UK; this is because many have failed and she hopes that this won’t be another one. She is very busy and leaves you with local school teacher Amadou, who will host you during your stay and act as your interpreter. 

The local chief, farmers, and their families are very excited to see you and you are taken aback by the lavish food, dancing, and reception that they have laid on especially for you. You exchange social media contacts with Amadou, who you understand has been instrumental in winning this contract. You get excited about working with Amadou on this project and the prospect of improving the livelihoods of the locals with better access to clean water. 

After some hours you get shown some of the existing pumping equipment, but you don’t recognise it and it has obviously been left idle for some time and looks to be in a poor state. The farmers appear confused and are surprised that you aren’t familiar with the pumps. They explain that the equipment is from China and was working well for many years. They understand how it operates and have even managed to repair some of the fittings in local workshops, but there are now key parts they have been waiting many months for and they assume that you have brought them with you. 

You try to explain through Amadou that there has been some misunderstanding and that you don’t have the spares but will be quoting for replacement equipment from your company in the UK. This is not what the farmers want to hear and the mood changes. They have spent many years getting to know this kit and now they can even locally fabricate some of the parts. Why would you change it all now? The farmers start shouting and Amadou takes you to one side and suggests you should respond by offering them something in return. 

What should you offer them? 

 

Optional STOP for questions and activities: 

1. Discussion: What is your initial reaction to the miscommunication? Does it surprise you? What might your initial reaction reveal to you about your own perspectives and values? 

2. Discussion: What is your initial reaction to the reception given to you? Does it surprise you? What might your initial reaction reveal to you about your own perspectives and values? 

3. Activity: Technical integration – undertake an electrical engineering technical activity related to water pumps and their power consumption against flow rates and heads. 

4. Discussion and activity: List the potential benefits and risks to implementing water pump technology compared to traditional methods of water collection. Are these benefits and risks the same no matter which country they are implemented in? 

5. Activity: Research water pumping in developing countries. What are the main technical and logistical issues with this technology? Are there any cultural issues to consider?  

6. Activity: This activity is related to optional pre-readings on environmental ethics. Consider how your perspective is related to the following environmental values, and pair/share or debate with a peer. 

 

Dilemma – Part two: 

You reluctantly backtrack a little on what you said earlier and convince Amadou and the farmers that you will be able to sort something out. Back in Accra at the local trade show, you manage to source only a few spares as a quick fix since you had to pay for them yourself without your colleague noticing. The aid representative agrees to take them up country next time she travels. 

You arrive back in the UK and begin to prepare the JCD bid. You are aware that the equipment from your company is very different to the Chinese kit that the farmers already have. It is designed to run on a different voltage and uses different pipe gauges throughout for the actual water pumping. The locally fabricated spares will definitely not connect to the JCD components you will be specifying. 

You voice your concerns to your manager about the local situation but your manager insists that it is not your problem and the bid will not win if it is not competitive. Sales in your department are not good at the moment, and after all you are a new employee on probation and you want to make a good first impression. 

Having further investigated some comments Amadou made on the trip, you discover that the water table has dropped by several metres in this part of Ghana over the last five years and you realise that the equipment originally quoted for might not even be up to the job! 

 

Optional STOP for questions and activities: 

1. Discussion: Should you disclose these newly discovered concerns about the water table height or keep quiet? 

2. Discussion: Do you continue to submit the bid for equipment that you know may be totally inappropriate? Why, or why not? 

3. Activity: Role-play a conversation between the engineer and the JCD manager about the issues that have been discovered. 

4. Discussion and activity: Research levels of the water table in West Africa and how they have changed over the last 50 years. Is there a link here to climate change? What other factors may be involved? 

5. Discussion: Environmental ethics deals with assumptions that are often unstated, such as the obligation to future generations. Some people find that our obligation is greater to people who exist at this moment than to those that don’t yet exist. Do you agree or disagree with this position? Why? Can we maintain an obligation to future generations while simultaneously saying that this must be weighed against the obligations in the here and now? 

6. Activity: Both cost-benefit and value trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences. (Use the Mapping actors and processes article to help with this activity.) 

7. Activity: Using reasoning and evidence, create arguments for choosing one of the possible courses of action. 

8. Activity: Use heuristics to analyse possible courses of action. One heuristic is the Environmental ethics decision making guide. Another is the 7-step guide to ethical decision-making. 

  

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case enhancement: Power-to-food technologies

Activity: An ethical evaluation of the technology and its impacts.

Author: Dr Fiona Truscott (UCL).

 

Overview:

This enhancement is for an activity found in the Dilemma Part one, Point 1 section of the case: “Identify different aspects of the production process where ethical concerns may arise, from production to delivery to consumption.” Below are prompts for discussion questions and activities that can be used. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.

In this group activity, students will act as consultants brought in by the Power to Food team to create an ethical evaluation of the technology and any impacts it may have throughout its lifetime. The aim here is for students to work together to discuss the potential ethical issues at each stage of the production process as well as thinking about how they might be addressed. Groups will need to do research, either in class or at home. Depending on the timeframe you may want to give them a starting point and some basic information found in the case study’s learning and teaching resources.

 

Suggested timeline:

 

Team briefing:

You are a team of consultants brought in by the company who has developed Power to Food technology. Before they go to market they want to understand the ethical issues that may arise from the technology and address them if possible. They want you to look at the process as a whole and identify any ethical issues that might come up. They also want to know how easy these issues might be to address and want you to suggest potential ways to address them. You will need to provide the company with a briefing on your findings.

 

Tools:

It’s useful to give teams some frameworks through which they can do an analysis of the production process. One of those is to discuss who is harmed by the process at each stage. This is harm in the widest possible sense: physical, environment, political, reputational etc. What or who could be impacted and how? Another framework is the values of the people or entities involved in the process: what are they trying to achieve or what do they want and are any of these in conflict? Topics such as sustainability and accessibility also have an ethical dimension, and using these as a lens can help students to look at the problem from a different viewpoint.

 

Prompts for questions:

These are questions that you can get students to answer in class or suggest that they cover in an assessment. This could also be information you give the team so that they can use it as a foundation.

 

Assessment:

This group activity lends itself to a few different assessment formats, depending on what fits with your programme and timeframe. The two key things to assess are whether students can understand and identify ethical issues across the whole Power to Food production process and whether they can discuss ways to address these issues and the complexities that can be involved in addressing these issues. These two things can be assessed separately; for example through a written report where teams discuss the potential issues and a presentation where they talk about how they might address these issues. Or one assessment can cover both topics. This can be a written report, a live or recorded presentation, a video, podcast or a poster. Teams being able to see other teams’ contributions is both a good way of getting them to discuss different viewpoints and makes for a fun session. You can get teams to present their final work or a draft to each other.

Depending on the timeframe, you may also want to build in some skills assessment too. The AAC&U’s VALUE rubrics are a great starting point for assessing skills and IPAC is a good tool for assessing teamwork via peer assessment.

 

Marking Criteria:

Good Average Poor
Understanding and identification of ethics issues across the whole Power to Food production process Has identified and understood context specific ethical issues across the production process. May have shown some understanding of how issues may impact on each other. Has identified and understood broad/general ethical issues around production processes but hasn’t linked much to the specific context of the case study. Some stages may be more detailed than others. Has not identified many or any ethical issues and seems to have not understood what we’re looking for.
Discussing ways to address these issues and the complexities that can be involved Has identified context specific ways to address the ethical issues raised and has understood the potential complexities of addressing those ethical issues. Has identified broad/general ways to address the ethical issues raised and made some reference to differing levels of complexity in addressing ethical issues. Has not identified many or any ways to address the ethical issues raised and seems to have not understood what we’re looking for.
Communication Very clear, engaging and easy to understand communication of the ethical issues involved and ways to address them. Right language level for the audience. Generally understandable but not clear in places or uses the wrong level of language for the audience (assumes too much or not enough prior knowledge). Difficult to understand the point being made either due to language used or disconnection to the point of the assessment or topic.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.


Case enhancement:
Business growth models in engineering industries within an economic system

Activity: Defending a profit-driven business versus a non-profit-driven business.

Author: Dr Sandhya Moise (University of Bath).

 

Overview:

This enhancement is for an activity found in the Dilemma Part one, Point 4 section of the case: “In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business. Use Maria’s case in defending your position.” Below are several prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.

 

Session structure:

1. As pre-class work, the students can be provided the case study in written format.

2. During class, the students will need to be introduced to the following concepts, for which resources are provided below (~20 min):

3. Group activity (15 min +)

4. Whole class discussion/debate (15 min +)

 

Learning resources:

Ethics in Engineering resources:

Professional Codes of Conduct resources:

Corporate Social Responsibility Resources:

ESG Mandate Resources:

In recent years, there have been calls for more corporate responsibility in environmental and socioeconomic ecosystems globally. For example:

In 2017, the economist Kate Raworth set out to reframe GDP growth to a different indicator system that reflects on social and environmental impact. A Moment for Change?

Further reading:

 

Group Activity – Structure:

Split the class into two or more groups. One half of the class is assigned as Group 1 and the other, Group 2. Ask students to use Maria’s case in defending their position.

 

Group activity 1:

Group 1: Defend a profit-driven business model – Aims at catalysing the company’s market and profits by working with big corporations as this will enable quicker adoption of technology as well as economically benefit surrounding industries and society.

Group 2: Defend a non-profit driven business – Aims at preventing the widening of the socioeconomic gap by working with poorly-funded local authorities to help ensure their product gets to the places most in need (opportunities present in Joburg).

 

Pros and Cons of each approach:

Group 1: Defend a profit-driven business model:

Advantages and ethical impact:

Disadvantage and ethical impacts:

Group 2: Defend a non-profit driven business:

Advantages and ethical impact:

Disadvantage and ethical impacts:

 

Relevant ethical codes of conduct examples:

Royal Academy’s Statement of Ethical Principles:

Both of the above statements can be interpreted to mean that engineers have a professional duty to not propagate social inequalities through their technologies/innovations.

 

Discussion and summary:

This case study involves very important questions of profit vs values. Which is a more ethical approach both at first sight and beyond? Both approaches have their own set of advantages and disadvantages both in terms of their business and ethical implications.

If Maria decides to follow a profit-driven approach, she goes against her personal values and beliefs that might cause internal conflict, as well as propagate societal inequalities.

However, a profit-driven model will expand the company’s business, and improve job opportunities in the neighbourhood, which in turn would help the local community. There is also the possibility to establish the new business and subsequently/slowly initiate CSR activities on working with local authorities in Joburg to directly benefit those most in need. However, this would be a delayed measure and there is a possible risk that the CSR plans never unfold.

If Maria decides to follow a non-profit-driven approach, it aligns with her personal values and she might be very proactive in delivering it and taking the company forward. The technology would benefit those in most need. It might improve the reputation of the company and increase loyalty of its employees who align with these values. However, it might have an impact on the company’s profits and slow its growth. This in turn would affect the livelihood of those employed within the company (e.g. job security) and risks.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Thomas Lennerfors (Uppsala University); Nina Fowler (Uppsala University); Johnny Rich (Engineering Professors’ Council); Professor Dawn Bonfield MBE (Aston University); Professor Chike Oduoza (University of Wolverhampton); Steven Kerry (Rolls-Royce); Isobel Grimley (Engineering Professors’ Council).

Topic: Alternative food production.

Engineering disciplines: Energy; Chemical engineering.

Ethical issues: Sustainability; Social responsibility.

Professional situations: Public health and safety; Personal/professional reputation; Falsifying or misconstruing data / finances; Communication.

Educational level: Advanced.

Educational aim: Practise ethical reasoning. Ethical reasoning applies critical analysis to specific events in order to evaluate, and respond, to problems in a fair and responsible way.

 

Learning and teaching notes:

This case involves an engineer navigating multiple demands on a work project. The engineer must evaluate trade-offs between social needs, technical specifications, financial limitations, environmental needs, legal requirements, and safety. Some of these factors have obvious ethical dimensions, and others are more ambiguous. The engineer must also navigate a professional scenario in which different stakeholders try to influence the resolution of the dilemma.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to: 

 

Learning and teaching resources:

 

Summary:

Power-to-X (P2X) describes a number of pathways for the transformation of electricity to alternative forms. This can be utilised for storing energy for later use, in order to balance periods of excesses and deficits resulting from the use of renewable energy technologies. It can also be used in applications that do not use electricity, such as through the transformation of electricity to hydrogen or other gases for industrial use.

One area that has seen significant development in recent years is power-to-food (PtF). This pathway results in CO2 being transformed, through chemical or biological processes powered by renewable energy, into food. One such process uses electrolysis and the Calvin cycle to create hydrocarbons from CO2, water and bacteria. The end result is a microbial protein, a substance that could be used in animal feed. Ultimately, the technology could produce a meat alternative suitable for human consumption, further reducing the carbon emissions produced by intensive animal farming.

 

Optional STOP for questions and activities: 

1. Activity: Identify the potential harms and risks of this technology, both objective and subjective. For example, could the shift of food production from soil to chemical industries concentrate power in the hands of a few? What public perceptions or cultural values might impact the acceptance or uptake of the technology? 

2. Discussion: Wider context – What social, technological, economic, environmental, political, or legal factors might need to be considered in order to implement this technology?

3. Activity: Research companies that are currently developing P2X technologies. Which industries and governments are promoting P2X? How successful have early projects been? What obstacles exist in upscaling?

4. Activity: Undertake a technical activity in the area of biochemical engineering related to the storing and transforming of renewable energy.

 

Dilemma – Part one:

You are the Chief Technical Officer at a company that has developed PtF technology that can convert CO2 to edible fatty acids (or triglycerides). The potential of CO2 capture is attractive to many stakeholders, but the combination of carbon reduction tied in with food production has generated positive media interest. The company also intends to establish its PtF facility near a major carbon polluter, that will reduce transport costs. However, some nearby residents are concerned about having a new industrial facility in their area, and have raised additional concerns about creating unsafe food.

As part of the process to commercialise this technology, you have been tasked with completing an ethical assessment. This includes an analysis of the technology’s short and long-term effects in a commercial application.

 

Optional STOP for questions and activities: 

1. Discussion and Activity: Identify different aspects of the production process where ethical concerns may arise, from production to delivery to consumption. Which ethical issues do you consider to be the most challenging to address?

2. Discussion: What cultural values might impact the ethical assessment? Does trust play a role in our ethical and consumption decisions? What internal logics / business goals might steer, or influence, the acceptance of various ethical considerations?

3. Discussion: Which areas of the ethical assessment might stakeholders be most interested in, or concerned about, and why?

4. Discussion: Does the choice of location for PtF facilities influence the ethical assessment? What problems could this PtF technology solve?

5. Discussion: What competing values or motivations might come into conflict in this scenario? What codes, standards, or authoritative bodies might be relevant to this? What is the role of ethics in technology development?

6. Activity: Assemble a bibliography of relevant professional codes, standards, and authorities.

7. Activity: Research the introduction of novel foods throughout history and / or engineering innovations in food production.

8. Activity: Write up the ethical assessment of the business case, and include findings from the previous questions and research.

 

Dilemma – Part two:

You deliver your ethical assessment to your manager. Shortly afterwards you are asked to edit the report to remove or downplay some ethical issues you have raised. The company leadership is worried that potential investors in an upcoming financing round may be dissuaded from investing in the company if you do not edit these sections.

 

Optional STOP for questions and activities: 

1. Discussion: Professional and ethical responsibilities – What are the ethical implications of editing or not editing the report? What consequences could this type of editing have? Think about stakeholders such as the company, potential investors and society.

2. Discussion: Wider considerations of business ethics – How would you recognise an ethical organisation? What are its characteristics? What is the role of ethics in business?

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Sarah Hitt SFHEA (NMITE); Professor Chike Oduoza (University of Wolverhampton); Emma Crichton (Engineering Without Borders UK); Professor Mike Sutcliffe (TEDI-London); Dr Sarah Junaid (Aston University); Isobel Grimley (Engineering Professors’ Council).

Topic: Monitoring and resolving industrial pollution.

Engineering disciplines: Chemical engineering; Civil engineering; Manufacturing; Mechanical engineering.

Ethical issues: Environment, Health, Public good.

Professional situations: Bribery, Whistleblowing, Corporate social responsibility, Cultural competency.

Educational level: Advanced.

Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action. 

 

Learning and teaching notes:

This case requires an engineer to balance multiple competing factors including: economic pressure, environmental sustainability, and human health. It introduces the perspective of corporate social responsibility (CSR) as a lens through which to view the dilemma. In this case study, the engineer must also make decisions that will affect their professional success in a new job and country.  

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

 

Summary:

Yasin is a pipeline design engineer who has been employed to manage the wastewater pipeline for MMC Textile Company in Gujarat. The company has a rapidly growing business contributing to one of India’s most important industries for employment and export. Yasin was hired through a remote process during the pandemic – he had never been to the industrial site or met his new colleagues in person until he relocated to the country. For 10 years, Yasin worked for the Water Services Regulation Authority in the UK as a wastewater engineer; this is the first time he has been employed by a private company and worked within the textile industry.

The production of textiles results in highly toxic effluent that must be treated and disposed of. A sludge pipeline takes wastewater away from MMC’s factory site and delivers it to a treatment plant downstream. On arrival at MMC, Yasin undertakes an initial inspection of the industrial site and the pipeline. He conducts some testing and measurements, then reviews the company’s documents and specifications related to the pipeline. This pipeline was built 30 years ago when MMC first began operations. In the last five years, MMC has partnered with a fast fashion chain and invested in advanced production technologies, resulting in a 50% increase in its yearly output. Yasin soon realises that as production has increased, the pipeline sometimes carries nearly double its registered capacity. Yasin was hired because MMC’s managers were aware that the pipeline capacity might be stretched and needed his expertise to develop a solution. However, Yasin suspects they are unaware of the real extent of the problem, and is nervous about how they will react to confirmation of this suspicion. Yasin is due to provide an informal verbal report on his initial inspection to the factory managers. This will be his first official business meeting since arriving in India.

 

Optional STOP for questions and activities:

1. Discussion: Although Yasin is a qualified and experienced engineer, what professional challenges might he encounter at MMC?

2. Discussion: What preparation does Yasin need to make for this informal meeting? What data or evidence should he present?

3. Activity: Role-play Yasin’s first meeting with the factory managers.

4. Activity: Research the environmental effects of textile production and / or India’s policies on textile waste management.

 

Dilemma – Part one:

At the meeting, Yasin is tasked with developing a menu of proposals to mitigate the problem. The options he puts forward include retrofitting the original pipeline, replacing it with a new one, eliminating the pipeline entirely and focusing on on-site water treatment technology, as well as other solutions. He is directed to consider the risks and benefits of the alternatives. These include the economic burdens, both the cost of the intervention as well as the decline in production necessitated while the intervention takes place, and the environmental consequences of action or inaction.  

During his research, Yasin discovers that informal housing has sprung up in the grey zone between the area’s formal zoned conurbation and the MMC industrial site. This is because there is little local regulation or enforcement as to where people are allowed to erect temporary or permanent dwellings. He estimates that there are several thousand people living in impoverished conditions on the edges of MMC’s property. Indeed, many of the people living in the informal settlement work in the lowest-skilled jobs at the textile factory. The informal settlement is located around a well that Yasin suspects may be polluted by effluent that seeps into the soil and groundwater when the pipeline overflows. He can find no information in company records about data related to this potential pollution.

 

Optional STOP for questions and activities:

1. Discussion: Does Yasin have a responsibility to do anything about the potential groundwater pollution at the informal settlement?

2. Discussion: Should Yasin advocate for the solution with the lowest cost?

3. Activity: Practise problem definition. What are the parameters and criteria Yasin should use in defining the issues at stake? What elements of the problem is he technically or ethically obligated to resolve? Why?

4. Activity: Create a tether diagram mapping the effects of each potential solution on the company, the local people, and the environment.

5. Activity: Undertake a technical activity in the areas of chemical, civil, manufacturing and / or mechanical engineering related to groundwater pollution.

 

Dilemma – Part two:

As Yasin learns more about MMC, he discovers that as the company grew rapidly in the last five years,  and has boosted its CSR initiatives, MMC started a programme to hire and upskill local labourers and began a charitable foundation to make donations to local schools and charities. For these activities, MMC has recently received a government commendation for its community commitments. Yasin is concerned about how to make sense of these activities on the one hand, and the potential groundwater contamination on the other. He speaks to his supervisor about MMC’s CSR initiatives and learns that company directors believe that their commendation will pave the way for an even better relationship with the government and perhaps enable a favourable decision on a permit to build another textile factory site nearby. At the end of the conversation, his supervisor indicates that if a new factory is built, it will need a chief site engineer. “That position would be double your current salary,” the supervisor says, “a good job on fixing this pipeline situation would make you look like a very attractive candidate.” Yasin is due to formally present his proposal about the pipeline next week to the factory manager and company directors.

 

Optional STOP for questions and activities:

1. Discussion: How should Yasin respond to the suggestion of a job offer?

2. Discussion: Should Yasin report any of MMC’s actions or motivations to an external authority?

3. Activity: Research CSR and its ethical dimensions, both in the UK and in India.

4. Activity: Undertake a technical activity in the areas of chemical, civil, manufacturing and / or mechanical engineering, related to pipeline design and flow rates.

5. Activity: Debate whether or not Yasin should become a whistleblower, either about the groundwater pollution or the job offer.

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website