Case Enhancement: Choosing to install a smart meter

Activity: Technical integration – Practical investigation of electrical energy.

Author: Mr Neil Rogers (Independent Scholar).

 

Overview:

This enhancement is for an activity found in the Dilemma Part two, Point 1 section of the case: “Technical integration – Undertake an electrical engineering technical activity related to smart meters and the data that they collect.”

This activity involves practical tasks requiring the learner to measure parameters to enable electrical energy to be calculated in two different scenarios and then relate this to domestic energy consumption. This activity will give technical context to this case study as well as partly address two AHEP themes:

This activity is in three parts. To fully grasp the concept of electrical energy and truly contextualise what could be a remote and abstract concept to the learner, it is expected that all three parts should be completed (even though slight modifications to the equipment list are acceptable).

Learners are required to have basic (level 2) science knowledge as well as familiarity with the Multimeters and Power Supplies of the institution.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Suggested pre-reading:

To prepare for these practical activities, teachers may want to explain, or assign students to pre-read articles relating to electrical circuit theory with respect to:

 

Learning and teaching resources:

 

Activity: Practical investigation of electrical energy:

Task A: Comparing the energy consumed by incandescent bulbs with LEDs.

1. Power in a circuit.

By connecting the bulbs and LEDs in turn to the PSU with a meter in series:

a. Compare the wattage of the two devices.

b. On interpretation of their data sheets compare their luminous intensities.

c. Equate the quantity of each device to achieve a similar luminous intensity of approximately 600 Lumens (a typical household bulb equivalent).

d. now equate the wattages required to achieve this luminous intensity for the two devices.

 

2. Energy = Power x Time.

The units used by the energy providers are kWh:

a. Assuming the devices are on for 6 hours/day and 365 days/year, calculate the energy consumption in kWh for the two devices.

b. Now calculate the comparative annual cost assuming 1 kWh = 27p ! (update rate).

 

3.  Wider implications.

a. Are there any cost-benefit considerations not covered?

b. How might your findings affect consumer behaviour in ways that could either negatively or positively impact sustainability?

c. Are there any ethical factors to be considered when choosing LED lightbulbs? For instance, you might investigate minerals and materials used for manufacturing and processing and how they are extracted, or end-of-life disposal issues, or fairness of costs (both relating to production and use).

 

Task B: Using a plug-in power meter.

1. Connect the power meter to a dishwasher or washing machine and run a short 15/30 minute cycle and record the energy used in kWh.

2. Connect the power meter to a œ filled kettle and turn on, noting the instantaneous power (in watts) and the time taken. Then calculate the energy used and compare to the power meter.

3. Connect the power meter to the fan heater and measure the instantaneous power. Now calculate the daily energy consumption in kWh for a fan heater on for 6 hours/day.

4. Appreciation of consumption of electrical energy over a 24 hour period (in kWh) is key. What are the dangers in reading instantaneous energy readings from a smart meter?

 

Task C: Calculation of typical domestic electrical energy consumption.

1. Using the list of items in Appendix A, calculate the typical electrical energy usage/day for a typical household.

2. Now compare the electrical energy costs per day and per year for these three suppliers, considering how suppliers source their energy (i.e. renewable vs fossil fuels vs nuclear etc).

 

Standing charge cost / day Cost per kWh Cost / day Cost / year
A) 48p 28p
B) 45p 31p
C) 51p 27p

 

3. Does it matter that data is collected every 30 minutes by your energy supplier? What implications might changing the collection times have?

4. With reference to Sam growing marijuana in the case, how do you think this will show up in his energy bill?

 

Appendix A: Household electrical devices power consumption:

Typical power consumption of electrical devices on standby (in Watts).

Wi-Fi router 10
TV & set top box 20
Radios & alarms 10
Dishwasher  5
Washing machine  5
Cooker & heat-ring controls 10
Gaming devices 10
Laptops x2 10

 

Typical consumption of electrical devices when active (in Watts) and assuming Gas central heating.

TV & set top box (assume 5 hours / day) 120
Dishwasher (assume 2 cycles / week) Use calculated
Washing machine (assume 2 cycles / week) Use calculated
Cooking (oven, microwave etc 1 hour / day) 1000
Gaming devices (1 hour / day) 100
Laptop ( 1 hour / day) 70
Kettle (3 times / day) Use calculated
Heating water pump (2 hours / day) 150
Electric shower (8 mins / day) 8000

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case enhancement: Developing a school chatbot for student support services

Activity: Stakeholder mapping to elicit value assumptions and motivations.

Author: Karin Rudolph (Collective Intelligence).

 

Overview:

This enhancement is for an activity found in point 5 of the Summary section of the case study.

What is stakeholder mapping?

What is a stakeholder?

Mapping out stakeholders will help you to:

  1. Identify the stakeholders you need to collaborate with to ensure the success of the project.
  2. Understand the different perspectives and points of view people have and how these experiences can have an impact on your project or product.
  3. Map out a wide range of people, groups or individuals that can affect and be affected by the project.

 

Stakeholder mapping:

The stakeholder mapping activity is a group exercise that provides students with the opportunity to discuss ethical and societal issues related to the School Chatbot case study. We recommend doing this activity in small groups of 6-8 students per table.

 

Resources:

 

Materials:

To carry out this activity, you will need the following resources:

1. Sticky notes (or digital notes if online).

2. A big piece of paper or digital board (Jamboard, Miro if online) divided into four categories:

3. Markers and pencils.

 

The activity:

 

Board One

List of stakeholders:

Below is a list of the stakeholders involved in the Chatbot project. Put each stakeholder on a sticky note and add them to the stakeholders map, according to their level of influence and interest in the projects.

Top tip: use a different colour for each set of stakeholders.

School Chatbot – List of Stakeholders:

 

Placement:

 

Guidance:

Each quadrant represents the following:

Board One

Motivations, assumptions, ethical and societal risks:

Materials:

1. A big piece of paper or digital board (Jamboard, Miro if online) divided into four categories:

2. Sticky notes (or digital notes if online).

3. Markers and pencils.

The activity:

 

Board Two

The Board Two activity can be done in two different ways:

Option 1:

You can use some guiding questions to direct the discussion. For example:

Option 2:

We have already written some assumptions, motivations and ethical/societal risks and you can add these as notes on a table and ask students to place according to each category: stakeholders, motivations, assumptions, and ethical and societal risks.

Motivations:

Assumptions:

Potential ethical and societal risks:

Move and match: 

 

 

 

Reflection:

Ask students to choose 2- 4 sticky notes and explain why they think these are important ethical/societal risks.

 

Potential future activity:

A more advanced activity could involve a group discussion where students are asked to think about some mitigation strategies to minimise these risks.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr Sarah Jayne Hitt (NMITE); Dr Matthew Studley (University of the West of England, Bristol); Dr Darian Meacham (Maastricht University); Dr Nik Whitehead (University of Wales Trinity Saint David); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professors’ Council).

Topic: Safety of construction materials.

Engineering disciplines: Mechanical, Materials.

Ethical issues: Safety, Communication, Whistleblowing, Power.

Educational level: Beginner.

Educational aim: To develop ethical awareness. Ethical awareness is when an individual determines that a single situation has moral implications and can be considered from an ethical point of view.

 

Learning and teaching notes:

This case concerns a construction engineer navigating multiple demands. The engineer must evaluate trade-offs between technical specifications, historical preservation, financial limitations, social needs, and safety. Some of these issues have obvious ethical dimensions, while others are ethically more ambiguous. In addition, the engineer must navigate a professional scenario in which different stakeholders try to influence the resolution of the dilemma.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to the AHEP outcomes specific to a programme under these themes, access AHEP4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:  

 

Learning and teaching resources:

 

Summary:

Krystyna is a construction engineer working as part of a team that is retrofitting a Victorian-era factory into multi-unit housing. As an amateur history buff, she is excited to be working on a listed building for the first time in her career after finishing university three years ago. However, this poses additional challenges: she must write the specification for glass windows that will maintain the building’s heritage status but also conform to 21st century safety standards and requirements for energy efficiency. In addition, Krystyna feels under pressure because Sir Robert, the developer of the property, is keen to maximise profits while maintaining the historic feel valued by potential buyers. He also wants to get the property on the housing market as soon as possible to help mitigate a housing shortage in the area. This is the first of many properties that Dave, the project’s contractor who is well-regarded locally and has 30 years of experience working in the community, will be building for Sir Robert. This is the first time that Krystyna has worked with Dave.

 

Optional STOP for questions and activities:

1. Discussion: What competing values or motivations might conflict in this scenario?

2. Discussion: What codes, standards and authority bodies might be relevant to this scenario?

3. Activity: Assemble a bibliography of relevant professional codes, standards, and authorities.

4. Activity: Undertake a technical project relating to testing glass for fire safety and / or energy efficiency.

5. Activity: Research the use of glass as a building material throughout history and / or engineering innovations in glass production.

 

Dilemma – Part one:

On her first walk through the property with Dave, Krystyna discovers that the factory building has large floor-to-ceiling windows on the upper stories. Dave tells her that these windows were replaced at some point in the past 50 years before the building was listed, at a time when it wasn’t used or occupied, although the records are vague. The glass is in excellent condition and Sir Robert has not budgeted either the time or the expense to replace glass in the heritage building.

While writing the specification, Krystyna discovers that the standards for fire protection as well as impact safety and environmental control have changed since the glass was most likely installed. After this research, she emails Dave and outlines what she considers to be the safest and most responsible form of mitigation: to fully replace all the large windows with glass produced by a supplier with experience in fire-rated safety glass for heritage buildings. To justify this cost, she highlights the potential dangers to human health and the environment of not replacing the glass.

Dave replies with a reassuring tone and refers to his extensive experience as a contractor. He feels that too many additional costs would be incurred such as finding qualified installers, writing up new architectural plans, or stopping work altogether due to planning permissions related to historic properties. He argues that there is a low probability of a problem actually arising with the glass. Dave encourages Krystyna not to reveal these findings to Sir Robert so that “future conflicts can be avoided.”

 

Optional STOP for questions and activities:

1. Discussion: What ethical issues that can be identified in this scenario?

2. Discussion: What interpersonal dynamics might affect the way this situation can be resolved?

3. Discussion: If you were the engineer, what action would you take, if any?

4. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities using the SERM found in the Learning and teaching resources section.

5. Activity: Role-play the engineer’s response to the contractor or conversation with the developer.

6. Discussion: How do the RAEng/Engineering Council Statement of Ethical Principles and the Society of Construction Law Statement of Ethical Principles inform what ethical issues may be present, and what solutions might be possible?

 

Dilemma – Part two:

After considerable back and forth with Dave, Krystyna sees that she is unlikely to persuade him to make the changes to the project that she has recommended. Now she must decide whether to go against his advice and notify Sir Robert that they have disagreed about the best solution. Additionally, Krystyna has begun to wonder whether she has a responsibility to future residents of the building who will be unaware of any potential dangers related to the windows. Meanwhile, time is moving on and there are other deadlines related to the project that she must turn her focus to and complete.

 

Optional STOP for questions and activities:

The Society of Construction Law’s Statement of Ethical Principles advises “provid[ing] information and warning of matters . . . which are of potential detriment to others who may be adversely affected by them.”

1. Activity: Debate whether or not Krystyna has an ethical or professional responsibility to warn relevant parties.

2. Discussion: If Krystyna simply warns them, is her ethical responsibility fulfilled?

3. Activity: Map the value conflicts and trade-offs Krystyna is dealing with. Use the Mapping Actors and Processes article in the Learning and teaching resources section.

4. Discussion: If you were Krystyna, what would you do and why?

5. Discussion: In what ways are the professional codes helpful (or not) in resolving this dilemma?

6. Discussion: ’Advises’ or ‘requires’? What’s the difference between these two words in their use within a code of ethics? Could an engineer’s response to a situation based on these codes of ethics be different depending on which of these words is used?

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Sarah Hitt SFHEA (NMITE); Professor Raffaella Ocone OBE FREng FRSE (Heriot Watt University); Professor Thomas Lennerfors (Uppsala University); Claire Donovan (Royal Academy of Engineering); Isobel Grimley (Engineering Professors’ Council).

Topic:  Developing customised algorithms for student support.

Engineering disciplines: Computing, AI, Data.

Ethical issues: Bias, Social responsibility, Risk, Privacy.

Professional situations: Informed consent, Public health and safety, Conflicts with leadership / management, Legal implications.

Educational level: Beginner.

Educational aim: Develop ethical sensitivity. Ethical sensitivity is the broad cognisance of ethical issues and the ability to see how these might affect others.

 

Learning and teaching notes:

This case study involves the employees of a small software start-up that is creating a customised student support chatbot for a Sixth Form college. The employees come from different backgrounds and have different perspectives on the motivations behind their work, which leads to some interpersonal conflict. The team must also identify the ethical issues and competing values that arise in the course of developing their algorithm.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts which build in complexity and navigate between personal, professional, and societal contexts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. Pre-reading ‘Ethics of Care and Justice’ is recommended, though not required, for engaging with Part two. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

 

Summary:

Exaba is a small, three-person software startup. Like all small businesses, it has been struggling with finances during the pandemic. The company began selling its services across a variety of industry sectors but is now trying to expand by developing software solutions for the growing education technology sector.

Ivan, Exaba’s founder and CEO, was thrilled to be contracted by a growing local Sixth Form College in North West England, NorthStar Academy, to create a chatbot that will optimise student support services. These services include ensuring student safety and wellbeing, study skills advice, careers guidance, counselling, and the identification for the need and implementation of extra learning support. It is such a large project that Ivan has been able to bring in Yusuf, a university student on placement from a computer systems programme, to help Nadja, Exaba’s only full-time software engineer. Ivan views the chatbot contract as not only a financial windfall that can help get the company back on track, but as the first project in a new product-development revenue stream.

Nadja and Yusuf have been working closely with the NorthStar Academy’s Principal, Nicola, to create ‘Alice’: the custom student-support chatbot to ensure that she is designed appropriately and is fit for purpose. Nicola has seen growing evidence that chatbots can identify when students are struggling with a range of issues from attendance to anxiety. She has also seen that they can be useful in helping administrators understand what students need, how to help them more quickly, and where to invest more resources to make support most effective.

 

Optional STOP for questions and activities:

1. Discussion: What moral or ethical issues might be at stake or arise in the course of this project?

2. Discussion: What professional or legal standards might apply to the development of Alice?

3. Discussion: What design choices might Nadja and Yusuf have to consider as they build the chatbot software in order for it to conform to those standards?

4. Discussion: is there anything risky about giving cognitive chatbots human names in general, or a female name specifically?

5. Activity: Undertake stakeholder mapping to elicit value assumptions and motivations.

6. Activity: Research any codes of ethics that might apply to AI in education, or policies / laws that apply to controlling and processing student data.

7. Activity: View the following TED talk and have a discussion on gender in digital assistants: Siri and Alexa are AI Built for the Past by Emily Liu.

 

Dilemma – Part one:

After undertaking work to ensure GDPR compliance through transparency, consent, and anonymisation of the data harvested by interactions with Alice, Nadja and Yusuf are now working on building the initial data set that the chatbot will call upon to provide student support. The chatbot’s information to students can only be as good as the existing data it has available to draw from. To enable this, Nicola has agreed to provide Exaba with NorthStar Academy’s existing student databases that span many years and cover both past and present students. While this data – including demographics, academic performances, and interactions with support services – is anonymised, Yusuf has begun to feel uncomfortable. One day, when the entire team was together discussing technical challenges, Yusuf said “I wonder what previous students would think if they found out that we were using all this information about them, without their permission?”

Ivan pointed out, “Nicola told us it was okay to use. They’re the data controllers, so it’s their responsibility to resolve that concern, not ours. We can’t tell them what to do with their own data. All we need to be worried about is making sure the data processing is done appropriately.”

Nadja added, “Plus, if we don’t use an existing data set, Alice will have to learn from scratch, meaning she won’t be as effective at the start. Wouldn’t it be better for our chatbot to be as intelligent and helpful as possible right away? Otherwise, she could put existing students at a disadvantage.”

Yusuf fell silent, figuring that he didn’t know as much as Ivan and Nadja. Since he was just on a placement, he felt that it wasn’t his place to push the issue any further with full-time staff.

 

Optional STOP for questions and activities:

1. Discussion: Expand upon Yusuf’s feelings of discomfort. What values or principles is this emotion drawing on?

2. Discussion: Do you agree with Yusuf’s perspective, or with Ivan’s and Nadja’s? Why?

3. Discussion: Does / should Yusuf have the right to voice any concerns or objections to his employer?

4. Discussion: Do / should previous NorthStar students have the right to control what the academy does with their data? To what extent, and for how long?

5. Discussion: Is there / should there be a difference between how data about children is used and that of adults? Why?

6. Discussion: Should a business, like Exaba, ever challenge its client, like NorthStar Academy, about taking potentially unethical actions?

7. Technical activity: Undertake a technical activity such as creating a process flow diagram, pieces of code and UI / UX design that either obscure or reinforce consent.

8. Activity: Undertake argument mapping to diagram and expand on the reasoning and evidence used by Yusuf, Nadja, and Ivan in their arguments.

9. Activity: Apply ethical theories to those arguments.  

10. Discussion: What ethical principles are at stake? Are there potentially any conflicts or contradictions arising from those principles?

 

Dilemma – Part two:

Nicola, too, was under pressure. The academy’s Board had hired her as Principal to improve NorthStar’s rankings in the school performance table, to get the college’s finances back on track, and support the government efforts at ‘levelling up’ This is why one of Nicola’s main specifications for Alice is that she be able to flag students at risk of not completing their qualifications. Exaba will have to develop an algorithm that can determine what those risk factors are.

In a brainstorming session Nadja began listing some ideas on the whiteboard. “Ethnic background, family income, low marks, students who fit that profile from the past and ultimately dropped out, students who engaged with support services a lot, students with health conditions . . .”

“Wait, wait, wait,” Yusuf said. “This feels a little bit like profiling to me. You know, like we think kids from certain neighbourhoods are unlikely to succeed so we’re building this thing to almost reinforce that they don’t.”

“The opposite is true!” Ivan exclaimed. “This algorithm will HELP exactly those students.”

“I can see how that’s the intention,” Yusuf acknowledged. “But I’ve had so many friends and neighbours experience well-intentioned but not appropriate advice from mentors and counsellors who think the only solution is for everyone to complete qualifications and go to university. This is not the best path for everybody!”

Nadja had been listening carefully. “There is something to what Yusuf is saying: Is it right to nudge students to stay in a programme that’s actually not a best fit for them? Could Alice potentially give guidance that is contrary to what a personal tutor, who knows the student personally, might advise? I don’t know if that’s the sort of algorithm we should develop.”

At this point Ivan got really frustrated with his employees: “This is the proprietary algorithm that’s going to save this company!” he shouted. “Never mind the rights and wrongs of it. Think of the business potential, not to mention all the schools and students this is going to help. The last thing I need is a mutiny from my team. We have the client’s needs to think about, and that’s it.”

 

Optional STOP for questions and activities:

1. Activity: compare an approach to this case through the ethics of care versus the ethics of justice. What different factors come into play? How should these be weighed? Might one approach lead to a better course of action than another? Why?

2. Discussion: what technical solutions, if any, could help mitigate Yusuf and Nadja’s concerns?

3. Activity: imagine that Ivan agrees that this is a serious enough concern that they need to address it with Nicola. Role play a conversation between Ivan and Nicola.

4. Activity: undertake a classroom debate on whether or not Alice has the potential to reinforce negative stereotypes. Variations include alley debate, stand where you stand, adopt and support opposite instinct.

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Raffaella Ocone OBE FREng FRSE (Heriot-Watt University); Professor Thomas Lennerfors (Uppsala University); Professor Sarah Hitt SFHEA (NMITE); Isobel Grimley (Engineering Professors’ Council).

Topic: Soil carbon sequestration and Solar geoengineering.

Engineering disciplines: Chemical engineering; Energy and Environmental engineering.

Ethical issues: Respect for the environment; Social responsibility; Risk.

Professional situations: Public health and safety, Communication.

Educational level: Beginner.

Educational aim: To develop ethical awareness. Ethical awareness is when an individual determines that a single situation has moral implications and can be considered from an ethical point of view.

 

Learning and teaching notes:

This case involves a dilemma that most engineering students will have to face at least once in their careers: which job offer to accept. This study allows students to consider how personal values affect professional decisions. The ethical aspect of this dilemma comes from weighing competing moral goods –that is, evaluating what might be the better choice between two ethically acceptable options. In addition, the case offers students an introduction to ethical principles underpinning EU environmental law, and a chance to debate ethical aspects surrounding emerging technologies. Finally, the case invites consideration of the injustices inherent in proposed solutions to climate change.

This case study addresses two AHEP 4 themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

 

Summary:

Olivia is a first-generation university student who grew up on a farm in rural Wales and was often frustrated by living in such a remote environment. When she received excellent A levels in maths and sciences, she took a place on a chemical engineering course in London.

Olivia became passionate about sustainability and thrived during her placements with companies that were working on innovative climate solutions. One of the most formative events for her  was COP26 in Glasgow. Here, she attended debates and negotiations that contributed to new global agreements limiting global warming to 1.5°C. Following this experience, Olivia has been looking for jobs that would allow her to work on the front line combating climate change.

 

Dilemma – Part one:

Olivia has received two job offers. One is a very well-paid position at CarGro, a small firm not far from her family farm. This company works on chemical analysis for soil carbon storage – the ability of soil’s organic matter to sequester carbon-rich compounds and therefore offset atmospheric CO2. 

The other offer is for an entry-level position at EnSol, a company developing the feasibility of stratospheric aerosol injection. This technology aims to mimic the effect that volcanic eruptions have on the atmosphere when they eject particles into the stratosphere that reflect sunlight and subsequently cool the planet. EnSol is a start-up located in Bristol that has connections with other European companies working on complementary technologies.

While considering these two offers, Olivia recalls an ethics lesson she had in an engineering design class. This lesson examined the ethical implications of projects that engineers choose to work on. The example used was of a biomedical engineer who had to decide whether to work on cancer cures or cancer prevention, and which was more ethically impactful. Olivia knows that both CarGro and EnSol have the potential to mitigate climate change, but she wonders if one might be better than the other. In addition, she has her own goals and motivations to consider: does she really want to work near her parents again, no matter how well-paid that job is?

 

Optional STOP for questions and activities: 

1. Discussion: Personal values – what personal values will Olivia have to weigh in order to decide which job offer to accept? 

2. Activity: research the climate mitigation potential of soil carbon sequestration (SCS) and stratospheric aerosol injection (SAI).

3. Discussion: Professional values – based on the research, which company is doing the work that Olivia might feel is most ethically impactful? Make an argument for both companies.

4. Discussion: Wider impact – what impact does the work of these two companies have? Consider this on local, regional, and global scales. Who benefits from their work, and who does not?

5. Discussion: Technical integration – undertake a technical activity in the areas of chemical engineering, energy and / or environmental engineering related to the climate mitigation potential of SCS and SAI.

 

Dilemma – Part two:

To help her with the decision, Olivia talks with three of her former professors. The first is Professor Carrera, whom Olivia accompanied to COP26. Professor Carrera specialises in technology policy, and tells Olivia about the precautionary principle, a core component of EU environmental law. This principle is designed to help governments make decisions when outcomes are uncertain.

The second is Professor Adams, Olivia’s favourite chemical engineering professor, who got her excited about emerging technologies in the area of climate change mitigation. Professor Adams emphasises the opportunity at EnSol provides, to be working on cutting-edge research and development – “the sort of technology that might make you rich, as well!”

Finally, Olivia speaks to Professor Liu, an expert in engineering ethics. Professor Liu’s latest book on social responsibility in engineering argues that many climate change mitigation technologies are inequitable because they unfairly benefit rich countries and have the potential to be risky and burdensome to poorer ones.

Based on these conversations, Olivia decides to ask the hiring managers at CarGro and EnSol some follow-up questions. Knowing she was about to make these phone calls, both her mother and her best friend Owen (who has already secured a job in Bristol) have messaged her with contradictory advice.  What does Olivia ask on the calls to CarGro and EnSol to help her make a decision? Ultimately, which job should Olivia take?

 

Optional STOP for questions and activities:

1. Activity and discussion: research the precautionary principle – what have been the potentially positive and negative aspects of its effect on EU policy decisions related to the environment?

2. Activity: identify the risks and benefits of SCS and SAI for different communities.

3. Activity: map the arguments of the three professors. Whose perspective might be the most persuasive to Olivia and why?

4. Activity: rehearse and role play phone calls with both companies.

5. Activity: debate which position Olivia should take.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr Sarah Junaid (Aston University); Emma Crichton (Engineers Without Borders UK); Professor Dawn Bonfield MBE (Aston University); Professor Chike Oduoza (University of Wolverhampton); Johnny Rich (Engineering Professors’ Council); Steven Kerry (Rolls-Royce); Isobel Grimley (Engineering Professors’ Council).

Topic: Ethical entrepreneurship in engineering industries.

Engineering disciplines: Mechanical engineering, Electrical and electronic engineering, Chemical engineering.

Ethical issues: Justice, Corporate social responsibility, Accountability.

Professional situations: Company growth, Communication, Public health and safety.

Educational level: Beginner to advanced.

Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action. 

 

Learning and teaching notes: 

This case involves the CEO of Hydrospector, a newly formed company that makes devices detecting water leaks. The CEO has been working hard to secure contracts for her new business and has a personal dilemma in structuring her business model. She must balance the need to accelerate growth by working with high revenue global corporations, with her desire to bring a positive impact to the communities with greatest need. By working with less wealthy local authorities, the company risks slower business growth.

This dilemma can be addressed from a micro-ethics point of view by analysing personal ethics, intrinsic motivations and moral values. It can also be analysed from a macro-ethics point of view, by considering: corporate responsibility in perpetuating inequity versus closing the inequality gap; and sustainability in terms of the local socioeconomic system.

There is also a clear cultural context in this case study that provides an opportunity to develop cultural awareness when addressing engineering problems. Through this lens, this case can be structured to emphasise the need to engage with local communities and stakeholders – such as a UK company choosing to engage with its local community first. Or it can be framed to emphasise global responsibility whereby the CEO of a UK company chooses to address water shortages in South Africa.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The case study is presented in three parts. Part one introduces the case and discusses personal and corporate ethical dilemmas, with an emphasis on ethical awareness. Pre-reading may be needed on the environmental, social, and governance (ESG) mandate and / or corporate social responsibility (CSR). Part two expands on Part one to bring in the socio-political elements of corporate responsibility. For Part three, instructors or programme directors could incorporate this exercise in projects that involve product development, with students working through Part one and two as examples. This part aims to encourage ethical action on the part of students who are developing their own products, so that they can consider aspects of justice, responsibility, and sustainability in their engineering solutions. This case also allows teachers the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:  

Teachers have the opportunity to:   

 

Learning and teaching resources: 

 

Foreword and suggested pre-reading for Part one:

In the last few years, there have been calls for more corporate responsibility in environmental and socioeconomic ecosystems globally. For example:

 

Part one:

Maria is a young co-founder and technical lead (CTO) living in the UK looking at the business development of her newly-formed transnational company, Hydrospector, based in Johannesburg (Joburg), South Africa, where her co-founder/CEO is located. The company makes devices that detect water leaks and the small team has been working hard to secure contracts for their new business. Maria is an electrical and electronics engineer by training and was the lead inventor for this technology. She has proven her technology works in detecting leaks early and at low levels, lowering the risk of damage to infrastructure that impacts local communities. The technology will also save companies millions each year by detecting low-level water loss that currently remains undetected. Her company is now in a position where they need to find customers.

Targeting big corporations will mean her technology will get out much more quickly and be a huge economic benefit to surrounding industries and society. Maria comes from a lower socioeconomic background in Lancashire (UK) and her personal experience of the economic disparity between the different areas she has lived in, means she feels strongly about not wanting to perpetuate this norm. She feels that Hydrospector’s business growth model needs to have a more active approach in preventing the widening of the socioeconomic gap. In Joburg, where the company is based, there are stark differences in the affluence of neighbouring communities. Should she focus on working with poorly-funded local authorities to help ensure their product gets to the places most in need, rather than prioritise projects that will be more lucrative and accelerate the business more quickly?

 

Optional STOP for questions and activities: 

1. Discussion: Personal values – what personal values are causing the internal conflict for Maria? Does her own background make a difference to the issues at stake? If Maria was from an affluent area / background, how may this have affected her perspective?

2. Discussion: Professional values – what ethical principles and codes of conduct are applicable to this scenario?

3. Discussion: Wider impact – is focusing on profit alone morally inferior to prioritising ESG?

4. Activity: In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business. Use Maria’s case in defending your position.

5. Activity: Technical integration – undertake a technical activity in the areas of mechanical, electrical and / or chemical engineering related water flow detection sensors.

 

Foreword and pre-reading for Part two:

It is useful to learn more about the context (geographical, political, social and cultural) of this case study in order to gain a deeper understanding of the nuances that each scenario brings. The following section outlines the local problems with water supply and misuse in South Africa compared to the UK. The links below are starting points to explore these challenges further and carry out research when working on projects as an engineer. They represent perspectives from news, government, and industry sources.

 

Part two:

The CEO and Operations Manager of Hydrospector is Maria’s friend and co-founder, Lucy, who grew up in Joburg. Like Maria, Lucy grew up experiencing the socioeconomic disparity in her area. Lucy’s passion for bringing benefits to disadvantaged communities makes their collaboration an ideal partnership. The company started trading in South Africa where there is a particular interest from Johannesburg Water, the main local water supply company. Water supply shortages in the region have badly affected the country in recent years. Hydrospector has successfully won a bid with a venture capitalist based in South Africa and has rolled out the sensors in Makers Valley, Joburg, a region that has developed economically in recent years. Soon after, the company also won a contract to install sensors in the Merseyside region of the UK in a trial project co-funded by the local council and United Utilities.

 

Scenario A – Environmental impact:

Hydrospector’s components are sourced in South Africa with both manufacturing and assembly carried out locally in Joburg. It has taken Lucy and her team a year to develop supply and manufacturing operations to run smoothly and economically. To ship to the UK would be a financially better deal for the company than to source and manufacture the product locally in the UK. However, the impact of the carbon footprint would not help their ESG goals. Lucy will have to decide whether to ship the product from South Africa or produce the product locally and therefore set up another operations team in the UK. Setting up in the UK will cost the company more due to component pricing, but would support the local economy. The company could potentially afford to set up UK operations, but this will impact heavily on their financial profit forecast in the first couple of years.

 

Optional STOP for questions and activities: 

1. Discussion: What should Lucy decide? What considerations does she need to make for supply chain management, when considering local customers compared to global ones?

2. Discussion: What could be the unintended consequences of her decision? Consider this question from the following points of view: environmental, economic and social – the public view.

 

Scenario B – Unintended outcomes:

After six months’ post-installation work in inner-city Bertrams, Makers Valley, Johannesburg Water has contacted Hydrospector about the illegal tapping of its pipes. They suspect water is being stolen from these settlements according to data from the installed sensors. Furthermore, engineers from Johannesburg Water carrying out maintenance work have found some of the sensors have been deliberately damaged, which they suspect has been done so that illegal tapping goes undetected. Johannesburg Water wants to prosecute those responsible and has contacted Lucy to provide all the data logged from the sensors and the time/date stamps to identify specific details about damage. Lucy, however, is aware of cases where funds intended to be used to improve infrastructure for low-income households such as electricity, water supply and sanitation, have sometimes been poorly managed and at worse embezzled so that the communities are left worse off, with ageing pipes and infrastructure. She realises that some illegal tapping may have been done in order to provide for these communities.

Several weeks after this discovery, United Utilities in Merseyside has been in touch about local individuals and companies illegally accessing water from hydrants that are found in street drains for their own usage. These companies have mobile trucks and so have been difficult to find and prosecute. United Utilities would like Hydrospector’s full co-operation in providing the logging data needed, as well as installing sensors at targeted locations where they suspect misuse is happening. Lucy’s research has found that 99% of leakages in the UK are not illegally sourced but rather are due to poor pipe networks. In fact, 20% of water supply loss in the UK is due to leaks and paid for by the customer (domestic users).

 

Optional STOP for questions and activities: 

1. Discussion: How should Hydrospector respond to the two requests? Should the response be the same or different? If the same, why? If different, what makes the two cases different?

2. Discussion: Should water supply companies ultimately be responsible for water leakages? If so, why are they charging domestic users for the 20% water loss? What are the environmental implications of this business decision?

3. Discussion: Maria and Lucy are also concerned that, if these cases were to be picked up by the media, there might be a reputational risk for the company and their ability to achieve their business vision and goals. The co-founders are worried about their product’s unintended consequences., They feel that it could be misused, potentially exacerbate socio-economic inequality further and go against the intended use of the product. Are they right to be concerned? Are they responsible for unintended outcomes?

4. Activity: What role should engineers have in shaping public policy? Often laws and regulations related to policy are dependent on technical knowledge, but some engineers believe it is not their role or responsibility to help shape policy. Debate this issue, or research the relationship between engineering and policy.

 

Scenario C – Public trust:

Hydrospector has been involved in a project where it surveyed and identified significant leakages and damage to the water supply system in one of the communities in Joburg. The company has been asked by the local authorities not to disclose this information to other parties, particularly media outlets, due to the security risks, including potential terrorism. However, this will affect the transparency of the project, which is publicly funded. In addition, reporting these findings could help resolve the problems found, for example, supply and construction companies may be willing to step up to help.

The company suspects that the local authorities are seeking to avoid a public outcry for the sake of impact scores on customer satisfaction. However, without public knowledge, change to improve the situation is likely to be slow.

 

Optional STOP for questions and activities: 

1. Discussion: Should the company keep the data unpublished or report the data? What ethical reasons can you identify for either choice?

2. Discussion: Should transparency be prioritised over public trust every time? Why or why not?

3. Activity: Debate the above questions by splitting up the students and having each group / individual represent the potential perspectives of United Utilities, Johannesburg Water and Maria / Lucy.

4. Discussion: What guidelines should companies be given for releasing publicly funded data and data misuse?

 

Foreword and pre-reading for Part three:

This exercise can be supported by technical and non-technical sessions such as business models, SWOT analysis, project management and risk.

 

Part three:

First, introduce Parts one and two of this case study to inform the exercise as part of a student project, such as a final year capstone.

Design a business growth model for an engineered product, identifying the potential socioeconomic impact, providing a viable profitable forecast and a life cycle sustainability assessment. Explore the ESG indicators and Raworth’s Doughnut of social and planetary boundaries as starting points.

 

Optional STOP for questions and activities: 

1. Discussion and activity: Is impact your main priority? What type of impact are you looking to gain for your business? Consider economic, personal, social and environmental impacts – such as research exercise.

2. Discussion: What risks and opportunities can be identified (SWOT) for the different growth models that could be used to achieve the impact you desire?

3. Activity: Create a business growth model and plan based on your critical research.

4. Activity: Draft a CSR plan for this business.

5. Activity: Speak to people in non-engineering fields that can review and help develop your model.

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Mike Sutcliffe (TEDI-London); Professor Mike Bramhall (TEDI-London); Prof Sarah Hitt SFHEA (NMITE); Johnny Rich (Engineering Professors’ Council); Professor Dawn Bonfield MBE (Aston University); Professor Chike Oduoza (University of Wolverhampton); Steven Kerry (Rolls-Royce); Isobel Grimley (Engineering Professors’ Council).

Topic: Smart meters for responsible everyday energy use.

Engineering disciplines: Electrical engineering

Ethical issues: Integrity, Transparency, Social responsibility, Respect for the environment, Respect for the law

Professional situations: Communication, Privacy, Sustainability

Educational level: Beginner

Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action. 

 

Learning and teaching notes:

This case is an example of ‘everyday ethics’. A professional engineer must give advice to a friend about whether or not they should install a smart meter. It addresses issues of ethical and environmental responsibility as well as public policy, financial burdens and data privacy. The case helps to uncover values that underlie assumptions that people hold about the environment and its connection to human life and services. It also highlights the way that those values inform everyday decision-making.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in three parts that build in complexity. If desired, a teacher can use Part one in isolation, but Part two and Part three develops and complicates the concepts presented in Part one in order to provide additional learning. The case allows teachers the opportunity to stop at various points to pose questions and/or set activities.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

 

Summary – Part one:

Sam and Alex have been friends since childhood. As they have grown older, they have discovered that they hold very different political and social beliefs, but they never let these differences of opinion get in the way of a long and important friendship. In fact, they often test their own ideas against each other in bantering sessions, knowing that they are built on a foundation of respect.

Sam works as an accountant and Alex has become an environmental engineer. Perhaps naturally, Alex often asks Sam for financial advice, while Sam depends on Alex for expert information related to sustainability and the environment. One day, knowing that Alex is knowledgeable about the renewable energy industry and very conscious of the impact of energy use at home, Sam messages Alex to say he is getting pressure from his energy company to install a smart meter.

Sam has been told that smart metering is free, brings immediate benefits to customers by helping them to take control of their energy usage, and is a key enabler for the transition away from fossil fuels use and towards the delivery of net zero emissions by 2050. Smart meters give consumers near real-time information on energy use, and the associated cost, enabling them to better manage their energy use, save money and reduce emissions. A further benefit is that they could charge their electric car far more cheaply using a smart meter on an overnight tariff.

Yet Sam has also read that smart meters ‘go dumb’ if customers switch providers and, as a pre-payment customer, this option may not be available with a smart meter. In addition, Sam suspects that despite claims that the smart meter roll out is free, the charge is simply being passed on to customers through their energy bills instead. Alex tries to give Sam as much good information as possible, but the conversation ends with the decision unresolved.

 

Optional STOP for questions and activities: 

1. Discussion and activity: Personal values – We know that Sam and Alex have different ideas and opinions about many things. This probably stems from a difference in how they prioritise values. For instance, valuing transparency over efficiency, or sustainability over convenience. Using this values activity as a prompt, what personal values might be competing in this particular case?

2. Discussion and activity: Everyday ethics – Consider what values are involved in your everyday choices, decisions, and actions. Write a reflective essay on three events in the past week that, upon further analysis, have ethical components.

3. Discussion: Professional values – Does Alex, as an environmental engineer, have a responsibility to advocate installing smart meters? If so, does he have more responsibility than a non-engineer to advocate for this action? Why, or why not?

4. Discussion: Wider impact – Are there broader ethical issues at stake here?

5. Activity: Role-play a conversation between Sam and Alex that includes what advice should be given and what the response might be.

 

Dilemma – Part two:

After getting more technical information from Alex, Sam realises that, with a smart meter, data on the household’s energy usage would be collected every 30 minutes.  This is something they had not anticipated, and they ask a number of questions about the implications of this. Furthermore, while Sam has already compared tariffs and costs as the main way to choose the energy provider, Alex points out that different providers use different energy sources such as wind, gas, nuclear, coal, and solar. Sam is on a tight budget but Alex explains that the cheaper solution is not necessarily the most environmentally responsible choice. Sam is frustrated: now there is something else to consider besides whether or not to install the smart meter.

 

Optional STOP for questions and activities:  

1. Activity: Technical integration Undertake an electrical engineering technical activity related to smart meters and the data that they collect.

2. Activity: Research what happens with the data collected by a smart meter. Who can access this data and how is privacy protected? How does this data inform progress towards the energy transition from fossil fuels?

3. Activity: Research different energy companies and their approach to responsible energy sourcing and use. How do these companies communicate that approach to the public? Which company would you recommend to your friend and why?

4. Activity: Cost-benefit analysis – Sometimes the ethical choice is the more expensive choice. How do you balance short- and long-term benefits in this case? When, if ever, would it be ethically right to choose energy from non-renewable sources? How would this choice differ if the context being considered was different? For example, students could think about responsible energy use in industrialised economies versus the developing world and energy justice.

 

Dilemma – Part three:

Following this exchange with Sam, Alex becomes aware that one of the main obstacles in energy transition concerns communication with the public. Ideally, Alex wants to persuade family and other friends to make more responsible choices; however, it is clear that there are many more factors involved than can be seen in one glance. This includes what kinds of pressure is put on consumers by companies and the government. Alex begins to reflect on how policy drives what engineers think and do, and joins a new government network on Engineering in Policy.  

Alex and Sam meet up a little while later, and Sam announces that yes, a smart meter has been installed. At first Alex is relieved, but then Sam lets it slip that they are planning to grow marijuana in their London home. Sam asks whether this spike in energy use will be picked up as abnormal by a smart meter and whether this would lead to them being found out.

 

Optional STOP for questions and activities:  

1. Discussion: Personal values – What are the ethics involved in trying to persuade others to make similar choices to you?

2. Discussion and activity: Legal responsibility – What should Alex say or do about Sam’s disclosure? Role-play a conversation between Sam and Alex.

3. Discussion: Professional responsibility – What role should engineers play in setting and developing public policy on energy?

4. Activity: Energy footprint – Research which industries use the most energy and, on a smaller scale, which home appliances use the most energy.

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website