Author: Dr Lampros Litos (Cranfield University). 

Topic: Sustainability in manufacturing. 

Tool type: Guidance. 

Engineering disciplines:  Aeronautical; Manufacturing, Mechanical. 

Keywords: Energy efficiency; Factories; Best practice; Eco-efficiency; Practice maturity model; AHEP; Student support; Sustainability. 

Sustainability competency: Critical thinking; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production). 

Reimagined Degree Map Intervention: More real-world complexity.


Learning and teaching notes: 

The following are a set of use cases for a maturity model designed to improve energy and resource efficiency in manufacturing facilities. This guide can help engineering educators integrate some of the main concepts behind this model (efficient use of energy and resources in factories in the context of continuous improvement and sustainability) into student learning by showcasing case study examples.   

Teachers could use one or all of the following use cases to put students in the shoes of a practicing engineer whose responsibility is to evaluate and improve factory fitness from a sustainability perspective.  


Supporting resources:  


Factory assessment in multiple assembly facilities for an aircraft manufacturer:

The assessment is part of the following use case on this industrial energy efficiency network (IEEN): 

The company operates in the aerospace sector and runs 11 manufacturing sites that employ approximately 50000 people across 4 European countries. Most of the sites are responsible for specific parts of the aircraft i.e. fuselage, wings. These parts once manufactured are sent to two final assembly sites. Addressing energy efficiency in manufacturing has been a major concern for the company for several years.  


It was not until 2006 that a corporate policy was developed that would formalize efforts towards energy efficiency and set a 20% reduction in energy by the year 2020 across all manufacturing sites. An environmental steering committee at board level was set up which also oversaw waste reduction and resource efficiency. The year 2006 became the baseline year for energy savings and performance measures. Energy saving projects were initiated then, across multiple manufacturing sites. These were carried out as project-based activities, locally guided by the heads of each division and function per site.  


A corporate protocol for developing the business case for each project is an initial part of the process. It is designed to assign particular resources and accountabilities to the people in charge of the improvements. Up to 2012, improvement initiatives had a local focus per site and an awareness-raising character. It was agreed that in order to replicate local improvements across the plants a process of cross-plant coordination was necessary. A study on the barriers to energy efficiency in this company revealed three important barriers which needed to be addressed: 

  • Lack of accountability: The site energy manager is responsible for reducing the site’s energy consumption but only has authority to act within a facility’s domain–that is, by improving facilities and services, such as buildings and switchgear. They are not empowered to act within a manufacturing operations parameter. Therefore, no one is responsible for reducing energy demand.  
  • No clear ownership: Many improvements are identified but then delayed due to a lack of funding to carry out the works. This is because neither facilities nor manufacturing operations agree whether the improvement is inside their parameter: typically, facilities claim that it is a manufacturing process improvement, and operations claim that any benefit would be realized by facilities. Both are correct, hence neither will commit resources to achieve the improvement and own the improvement. 
  • No sense of urgency: A corporate target exists for energy reduction–but the planned date for achieving this is 2020.  

The solution that the environmental steering committee decided to support, was the creation of an industrial energy efficiency network (IEEN). The company had previously done something similar when seeking to harmonize its manufacturing processes through  process technology groups (Lunt et al., 2015). This approach consists of each plant nominating a representative who is taking the lead and coordinating activities. It is expected that the industrial network would contribute to a significant 7% share out of the 20% energy reduction target for the year 2020 since its establishment as an operation in 2012.  


The network’s operations are further facilitated with corporate resources such as online tools that help practitioners report and track the progress of current projects, review past ones, and learn about best-available techniques. This practice evolved into an intranet website that is further available to the wider community of practitioners and aims to generate further interest and enhance the flow of information back to the network. Additionally, a handbook to guide new and existing members in engaging effectively with the network and its objective has been developed for wider distribution. These tools are supported by training campaigns across the sites.   


Most of the network members also act as boundary spanners (Gittell and Weiss, 2004) in the sense that they have established connections to process technology groups or they are members of these groups as well. This helps the network establish strong links with other informal groups within the organization and act as conductor for a better flow of ideas between these groups and the network. Potentially, network members have a chance to influence core technology groups towards energy efficiency at product level.  


On average, a 5-10% work-time allocation is approved for all network members to engage with the network functions. In case a member is not coping in terms of time management there is the option of sub-contracting the improvement project to an external subcontractor who is hired for that particular purpose and the subcontractor’s time allocation to the project can be up to 100%.  


 “….by having the network we meet and we select together a list of projects that we want to put forward to access that central pot of money. So we know roughly how much will be allocated to industrial energy efficiency and so we select projects across all of the sites that we think will get funded and we put them all together as a group…so rather than having lots of individual sites making individual requests for funding and being rejected, by going together as a group and having some kind of strategy as well…” 


Each dot on each of the model rows represents the relative efficiencies that a factory achieves in saving energy and resources through best practice (5 of 11 factories represented here, each delivering an aircraft part towards final assembly). The assessment allowed this network of energy efficiency engineers and managers to better understand the strengths and weaknesses in different factories and where the learning opportunities exist (and against which dimension of the model). 


2. The perception problem in manufacturing processes and management practice:

The following assessment is performed in a leading aerospace company where two senior engineering managers (green and orange lines) find it difficult to agree on the maturity of different practices currently used at the factory level as part of their environmental sustainability strategy.  

This assessment was part of the following use case: 

The self-assessment was completed by the head of environment and one of his associates in the same function. These two practitioners work closely together and are based in the UK headquarters. Even though the maturity profiles do not vary significantly (1 level plus or minus) it is clear that there is very little overall agreement on the maturity levels in each dimension.  


3. Using the maturity model as a consensus building tool in a factory:

Seven practitioners from different parts of the business (engineering, operations, marketing, health and safety etc.) were brought together to understand how they think the factory performs. The convergence between perceptions was very small and this would indicate high levels of resistance to change and continuous improvement. For example, if senior managers think they are doing really well, they will not invest time and effort in better practices and technologies. 

A timeline (today +5years) was used to understand where they think they are today and where they want to be tomorrow.  

This can be one of the ways of thinking about improvements that need to occur, starting with areas of interest that are underperforming and developing the right projects to address the gaps. 



Lunt, M.F. et al. (2015) ‘Reconciling reported and unreported HFC emissions with  Atmospheric Observations’, Proceedings of the National Academy of Sciences, 112(19), pp. 5927–5931.  

Gittell, Jody & Weiss, Leigh. (2004). Coordination Networks Within and Across Organizations: A Multi-level Framework. Journal of Management Studies. 41. 127-153. 



1. High resolution picture of the maturity model for printing (also available here: Litos, L. (2016). Design support for eco-efficiency improvements in manufacturing p. 218.)


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
To view a plain text version of this resource, click here to download the PDF.

Theme: Universities’ and business’ shared role in regional development; Collaborating with industry for teaching and learning; Knowledge exchange; Research; Graduate employability and recruitment.

Author: Prof Matt Boyle OBE (Newcastle University).

Keywords: Electrification; Collaboration Skills; Newcastle.

Abstract: Driving the Electric Revolution is led by Newcastle and is a collaborative R&D project to build supply chains in Power Electronics Machines and Drives. The University led the bid and as we amass supply chain capability we will generate £ Billions in GVA.


Newcastle University has been embedded in the academic and industrial development of the North East of England since 1834. Recently, one of its core competencies, Machines and Drives research, has been used to attract investment to the region from Industry and Government helping to increase the economic prospects for the North East region.

Newcastle University is the national lead organisation for Driving the Electric Revolution Industrialisation Centres an Industrial Strategy Challenge Fund Wave 3 competition. The centres serve two purposes,

  1. A focal point for development of manufacturing processes in Power Electronics, Machines and Drives (PEMD) through investment in cutting edge manufacturing equipment.
  2. The training of researchers, students, employees of industrial partners on these important new processes.

The Driving the Electric Revolution (DER) Industrialisation Centres (DERIC) project aims to accelerate UK industrialisation of innovative and differentiated PEMD manufacturing and supply chain solutions. They are doing this by creating a national network to coordinate and leverage the capabilities of 35 Research and Technology Organisations (RTO) and academic establishments, based within four main centres.  Supported by 166 industrial partners it represents the largest coordinated industrialisation programme the UK PEMD sector has ever seen.

Newcastle University has, in living memory, always been at the forefront of Electric Machines and Drives innovation globally. It was inevitable that Newcastle would lead the DER project given its pedigree, reputation and the fact that it was supported by several companies in several sectors, Automotive, Aerospace and domestic products who undertake product research in the North East and who seek to manufacture in the UK if possible.

Newcastle did recognise however that it couldn’t deliver the government programme alone. There were four institutions which formed a consortium to bid into the competition, Newcastle University, University of Strathclyde, Warwick Manufacturing Group and the Compound Semiconductor Applications Catapult in Newport South Wales. Over time they have been joined by University of Nottingham, University of Birmingham, Swansea University and University of Warwick. Letters of support were received from 166 Industry partners, 27 FE and HE organisations expressed support as did 13 RTOs. Although the national bid was led by Newcastle, it took a more North East regional view in development of its delivery model.

Therefore, in addition to this national work, Newcastle extended their DERIC application beyond Newcastle to Sunderland where they worked with Sunderland council to establish a DERIC research facility in the area. Sunderland city council worked with Newcastle to acquire, fit out and commission the lab which received equipment from the project and is due to open in 2022.

Nationally the primary outcome is the establishment of the Driving the Electric Revolution Industrialisation Centres and the network.

The four DERIC act as focal points for the promotion of UK PEMD capabilities. They design develop and co-sponsor activities at international events. They send industrial representatives to meet with clients and research partners from UK, Europe and Asia, as well as developing a new UK event to attract leading PEMD organisations from around the globe.

In Newcastle the university’s sponsorship of both the national project as well as the DERIC in the North East is helping attract, retain and develop local innovation and investment. The equipment granted by the DER Challenge to the centre includes a Drives assembly line as well as an advanced Machines line. The DERIC is focused primarily in the development of manufacturing processes using the granted equipment. The equipment was selected specifically with these new processes in mind. The success of the DERIC program already means that the country and the region have attracted substantial inward investment.

Investments by three companies came to the North East because of the capability developed in the region. They have all agreed partnerships with the university in the process of establishing, acquiring and investing in the North East. The three companies are:

  1. British Volt mission is to accelerate the electrification of society. They make battery cells. Their Gigaplant in Northumberland will be the second Gigaplant in the UK. They are investing £1Bn into the region creating around 5,000 jobs both at the plant and in the supply chain.
  2. Envision also make batteries. Unlike British volt the Envision cell is a Gel pack. Envision has the first Gigaplant in the UK at Sunderland. They are investing a further £450M to expand the plant in Sunderland and potentially another £1.8Bn by 2030.
  3. Turntide Technologies invested £110M into the region acquiring three businesses. These have all in some fashion been supported by and supportive of the PEMD capability at Newcastle over the past six decades.

The university has worked tirelessly to help create an ecosystem in the region for decarbonisation and electrification.

The last stage of this specific activity is the creation of the trained employees for this new North East future. The university, collaborating across the country with DER partners, is embarking on an ambitious plan to help educate, train and upskill the engineers, scientists and operators to support these developments. It is doing this by collaborating, for the North East requirement, with the other universities and further education colleges in the region. Industry is getting involved by delivering a demand signal for its requirements. The education, training and up skilling of thousands of people over the next few years will require substantial investments by both the educators in the region as well as industry.

As the pace of electrification of common internally combusted applications accelerates the need for innovation in the three main components of electrification, power source, drive and machine will grow substantially. The country needs more electrification expertise. The North East region has many of the basic building blocks for a successful future in electrification. Newcastle University and its Academic and Industrial partners have shown the way ahead by collaborating, leading to substantial inward investment which will inevitably lead to greater economic prosperity for the region. Further information is available from the Driving the Electric Revolution Industrialisation Centres website. In addition, there are annual reports and many events hosted, sponsored or attended by the centres.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.


Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:


Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby
Creativity in Engineering: Your CV Leigh-Ann Russell
Creativity in Engineering: Your CV Richard Hopkins
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
Project Management and Engineers Fiona Neads (Rolls Royce)
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
Ethics at Work Emily Harford (UKAEA)
Communication Skills at Work Emily Harford (UKAEA)
Client Brief Andy Stanford-Clark (IBM)
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
Intellectual Property Andy Stanford-Clark (IBM)
Project Management Fiona Neads – Rolls Royce


Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website