Degree Apprenticeships Toolkit

In September 2015 the first university-business co-developed Degree Apprenticeship  programmes, were launched – having been designed and eligible for funding under the government’s new model for apprenticeship training (Apprenticeship Standards), and expected to be resourced via the so called “apprenticeship Levy”.

Whilst still at a relatively small scale and early stage, as at March 2016, Apprenticeship Standards are ‘ready for delivery’ at the Degree Apprenticeship level in three discipline areas – two of which are engineering-related.  A further seven are awaiting approval, five of which are engineering-related.

Some toolkit content is available to members only. For best results, make sure you’re logged in.


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Cortney Holles (Colorado School of Mines); Ekaterina Rzyankina (University of Cape Town).

Topic: Critical digital literacy.

Engineering disciplines: Computer Science; Information Systems; Biomedical engineering.

Ethical issues: Cultural context; Social responsibility; Privacy.

Professional situations: Public health and safety; Working in area of competence; Informed consent.

Educational level: Intermediate.

Educational aim: Engaging in ethical judgement: reaching moral decisions and providing the rationale for those decisions.


Learning and teaching notes:

The case involves an engineering student whose personal choices may affect her future professional experience. It highlights both micro- and macro-ethical issues, dealing with the ways that individual actions and decisions can scale to create systemic challenges.

An ethical and responsible engineer should know how to work with and use digital information responsibly. Not all materials available online are free to use or disperse. To be digitally literate, a person must know how to access, evaluate, utilise, manage, analyse, create, and interact using digital resources (Martin, 2008). It is important to guide engineering students in understanding the media landscape and the influence of misleading information on our learning, our political choices, and our careers. A large part of critical digital literacy is evaluating information found on the web. For students working on a research project or an experiment, accessing accurate information is imperative. This case study offers several approaches to engaging students in the critique and improvement of their critical digital literacy skills. The foundations of this lesson can be applied in multiple settings and can be expanded to cover several class periods or simplified to be inserted into a single class.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use the Summary and Part one in isolation, but Part two develops and complicates the concepts presented in the Summary and Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:


Learning and teaching resources:

News articles:

Educational institutions:

Legal regulations:

Non-profit organisations:




Katherine is a biomedical engineering student in her 3rd year in 2022, and will have a placement in a community hospital during her last term at university. She plans to pursue a career in public health after seeing what her country went through during the Covid-19 pandemic. She wants to contribute to the systems that can prevent and track public health risks from growing too large to manage, as happened with Covid-19. She is motivated by improving systems of research and treatment for emerging diseases and knows that communication between a variety of stakeholders is of the utmost importance.


Optional STOP for questions and activities:

1. Discussion: What can you determine about Katherine’s values and motivation for her studies and her choice of career?

2. Discussion: How do you connect with her mission to improve diagnostic and treatment systems for public health threats?

3. Discussion: Who should be responsible for the messaging and processes for public health decisions? How are engineers connected to this system?

4. Activity: Research the Covid-19 vaccine rollout in the United Kingdom versus other countries – how did power, privilege, and politics influence the response?

5. Activity: Research current public health concerns and how they are being communicated to the public. In what ways might engineers affect how and what is communicated?


Dilemma – Part one:

As Katherine approaches the winter holiday season, she makes plans to visit her grandmother across the country. She hasn’t seen her since before the Covid-19 pandemic and is excited to be around her extended family for the holidays once again. However, she receives an email from her cousin informing everyone that he and his family are not vaccinated against Covid-19 because the whole vaccination operation was forced upon citizens and they refused to participate. Katherine is immediately worried for her grandmother – at 85 years old, she is at a higher risk than most – and for her brother, who suffers from Addison’s disease, an autoimmune disorder. Additionally, if Katherine comes into contact with Covid-19 while celebrating the holidays with her family, she could suffer repercussions at both her university and the hospital where she will work for her placement.


Optional STOP for questions and activities:

1. Discussion: How can Katherine communicate with her cousin about her concerns for her brother and grandmother? How might she use her expertise as a biomedical engineer in this conversation?

2. Discussion: What kind of information will be most convincing to support her decision? What sources would provide the evidence she is looking for, and which ones would provide counter arguments?

3. Discussion: What impacts might the decision have on Katherine’s position as a student or in the hospital?

4. Discussion: Do engineers, scientists, and medical professionals have more of an obligation to promote and adhere to public health guidance? Why or why not?

5. Activity: Talk to people in your life about their experience of navigating the Covid-19 vaccine. Did they choose to get it as soon as it was available? Did they avoid getting the vaccine for particular reasons? Were there impacts on their personal relationships or work because of their choices about the vaccine?

6. Activity: Research some of the impacts on individuals with health concerns and comorbidities in regard to Covid-19 and other viruses or public health concerns. How do these experiences match with or differ from your own?

7. Activity: Investigate the different ways that engineers were involved in vaccination development and response.    


Dilemma – Part two:

Katherine went back to university after a lengthy break for the holidays and immediately registered for an account on Facebook as a brand-new user. She was in such a hurry to have her profile up that she did not take the time to configure any privacy settings. She stayed up late reading an article about Covid-19  that had been posted on the website of one of the online newspapers. Before she posted this report on her own Facebook page, she did not verify the accuracy of the information or the source of the information.


Optional STOP for questions and activities:

1. Discussion: What kind of impact might this social media activity have on Katherine’s position as a student or in the company/organisation/hospital she is working for as an intern? What should Katherine be worried or concerned about after posting information?

2. Discussion: Do social media companies collect or ask for any other non-essential information from you? Why does the website claim that they are collecting or asking for your information? Does the website share/sell/trade the information that they collect from you? With whom does the website share your collected information? How long does the website keep your collected information? Does the website delete your information, or simply de-personalise it?

3. Discussion: Regarding question 2, how are engineers involved with products, processes, or services that enable those choices and actions?

4. Discussion: What is real and fake news? How do you know? What do you look for to know if it is real or fake news (share guidelines)? Do you expect it to be easy to spot fake news? Why should we care if people distribute and believe fake news?

Students are particularly susceptible to being duped by propaganda, misleading information, and fake news due to the significant role that information and communication technology which is problematic to verify plays in their everyday life. Students devote a significant portion of their time to participating in various forms of online activity, including watching television, playing online games, chatting, blogging, listening to music, posting photos of themselves on social networking sites, and searching for other individuals with whom they can engage in online conversation. Students owe a significant portion of what they know about the world and how they perceive reality to the content that they read online. While many people share reliable and positive information online, others may engage in negative impact information sharing:

5. Discussion: What are some other examples of how engineering might fall prey to negative impact information sharing?

6. Discussion: How might engineers help address the problem of fake news and negative impact information sharing?



Martin, A. (2008). ‘Digital Literacy and the “Digital Society”’, in Lankshear C. and Knobel M. (eds.), Digital Literacies: Concepts, Policies, and Practices. New York: Peter Lang,  (pp. 151-176).


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr Yujia Zhai (University of Hertfordshire); Associate Professor Scarlett Xiao (University of Hertfordshire). 

Topic: Data security of industrial robots.  

Disciplines: Robotics; Data; Internet of Things. 

Ethical issues: Safety; Health; Privacy; Transparency. 

Professional situations: Rigour; Informed consent; Misuse of data. 

Educational level: Intermediate. 

Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices. 


Learning and teaching notes: 

This case study involves an engineer hired to develop and install an Industrial Internet of Things (IIoT) online machine monitoring system for a manufacturing company. The developments include designing the infrastructure of hardware and software, writing the operation manuals and setting policies. The project incorporates a variety of ethical components including law and policy, stakeholders, and risk analysis. 

This case study addresses three of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): Design and Innovation (significant technical and intellectual challenges commensurate the level of study), the Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools, and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Part two and Part three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities as desired. 

Learners have the opportunity to: 

Teachers have the opportunity to:  


Learning and teaching resources: 

Professional organisations: 

Legal regulations: 

UN agency: 

Educational resource: 

Government sites: 

 Educational institutions: 



IIoT is a new technology that can provide accurate condition monitoring and predict component wear rates to optimise machine performance, thereby improving the machining precision of the workpiece and reducing the production cost.   

Oxconn is a company that produces auto parts. The robotic manipulators and other automation machines on the production line have been developed at considerable cost and investment, and regular production line maintenance is essential to ensure its effective operation. The current maintenance scheme is based on routine check tests which are not reliable and efficient. Therefore Oxconn has decided to install an IIoT-based machine condition monitoring system. To achieve fast responses to any machine operation issues, the machine condition data collected in real time will be transferred to a cloud server for analysis, decision making, and predictive maintenance in the future. 


Dilemma – Part one – Data protection on customers’ machines:

You are a leading engineer who has been hired by Oxconn to take charge of the project on the IIoT-based machine monitoring system, including designing the infrastructure of hardware and software, writing the operation manuals, setting policies, and getting the system up and running. With your background in robotic engineering and automation, you are expected to act as a technical advisor to Oxconn and liaise with the Facilities, Security, Operation, and Maintenance departments to ensure a smooth deployment. This is the first time you have worked on a project that involves real time data collection. So as part of your preparation for the project, you need to do some preliminary research as to what best practices, guidance, and regulations apply. 


Optional STOP for questions and activities: 

1. Discussion: What are the legal issues relating to machine condition monitoring? Machines’ real-time data allows for the identification of production status in a factory and is therefore considered as commercial data under GDPR and the Data Protection Act (2018). Are there rules specifically for IIoT, or are they the same no matter what technology is being used? Should IIoT regulations differ in any way? Why? 

2. Discussion: Sharing data is a legally and ethically complex field. Are there any stakeholders with which the data could be shared? For instance, is it acceptable to share the data with an artificial intelligence research group or with the public? Why, or why not? 

3. Discussion: Under GDPR, individuals must normally consent to their personal data being processed. For machine condition data, how should consent be handled in this case? 

4. Discussion: What ethical codes relate to data security and privacy in an IIoT scenario?  

5. Activity: Undertake a technical activity that relates to how IIoT-based machine monitoring systems are engineered. 

6. Discussion: Based on your understanding of how IIoT-based machine monitoring systems are engineered, consider what additional risks, and what kind of risks (such as financial or operational), Oxconn might incur if depending on an entirely cloud-based system. How might these risks be mitigated from a technical and non-technical perspective? 


Dilemma – Part two – Computer networks security issue brought by online monitoring systems:

The project has kicked off and a senior manager requests that a user interface (UI) be established specifically for the senior management team (SMT). Through this UI, the SMT members can have access to all the real-time data via their computers or mobiles and obtain the analysis result provided by artificial intelligence technology. You realise this has implications on the risk of accessing internal operating systems via the external information interface and networks. So as part of your preparation for the project, you need to investigate what platforms can be used and what risk analysis must be taken in implementation. 


Optional STOP for questions and activities: 

The following activities focus on macro-ethics. They address the wider ethical contexts of projects like the industrial data acquisition system. 

1. Activity: Explore different manufacturers and their approaches to safety for both machines and operators. 

2. Activity: Technical integration – Undertake a technical activity related to automation engineering and information engineering. 

3. Activity: Research what happens with the data collected by IIoT. Who can access this data and how can the data analysis module manipulate the data?  

4. Activity: Develop a risk management register, taking considerations of the findings from Activity 3 as well as the aspect of putting in place data security protocols and relevant training for SMT. 

5. Discussion/activity: Use information in the Ethical Risk Assessment guide to help students consider how ethical issues are related to the risks they have just identified. 

6. Discussion: In addition to cost-benefit analysis, how can the ethical factors be considered in designing the data analysis module? 

7. Activity: Debate the appropriateness of installing and using the system for the SMT. 

8. Discussion: What responsibilities do engineers have in developing these technologies? 


Dilemma – Part three – Security breach and legal responsibility: 

At the beginning of operation, the IIoT system with AI algorithms improved the efficiency of production lines by updating the parameters in robot operation and product recipes automatically. Recently, however, the efficiency degradation was observed, and after investigation, there were suspicions that the rules/data in AI algorithms have been subtly changed. Developers, contractors, operators, technicians and managers were all brought in to find out what’s going on. 


Optional STOP for questions and activities: 

1. Discussion: If there has been an illegal hack of the system, what might be the motive of cyber criminals?   

2. Discussion: What are the impacts on company business? How could the impact of cyber-attacks on businesses be minimised?

3. Discussion: How could threats that come from internal employees, vendors, contractors or partners be prevented?

4. Discussion: When a security breach happens, what are the legal responsibilities for developers, contractors, operators, technicians and managers? 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Wendy Attwell (Engineering Professors’ Council).

Topic: Balancing personal values and professional conduct in the climate emergency. 

Engineering disciplines: Civil engineering; Energy and Environmental engineering; Energy. 

Ethical issues: Respect for the environment; Justice; Accountability; Social responsibility; Risk; Sustainability; Health; Public good; Respect for the law; Future generations; Societal impact. 

Professional situations: Public health and safety; Communication; Law / Policy; Integrity; Legal implications; Personal/professional reputation. 

Educational level: Intermediate. 

Educational aim: Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way. 


Learning and teaching notes:  

This case study involves an engineer who has to weigh personal values against professional codes of conduct when acting in the wake of the climate crisis. This case study allows students to explore motivations and justifications for courses of action that could be considered morally right but legally wrong.  

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4  here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired. 

Learners have the opportunity to: 

Teachers have the opportunity to: 


Learning and teaching resources: 

Professional organisations: 

Educational institutions: 

Education and campaign groups: 

 News articles:  



Kelechi is a civil engineer in a stable job, working on the infrastructure team of a County Council that focuses on regeneration and public realm improvements. Kelechi grew up in an environment where climate change and its real impacts on people was discussed frequently. She was raised with the belief that she should live as ethically as possible, and encourage others to consider their impact on the world. These beliefs were instrumental in leading Kelechi into a career as a civil engineer, in the hope that she could use her skills and training to create a better world. In one of her engineering modules at university, Kelechi met Amanda, who encouraged her to join a student group pushing for sustainability within education and the workplace. Kelechi has had some success with this within her own job, as her employer has been willing to participate in ongoing discussions on carbon and resilience, and is open to implementing creative solutions.  

But Kelechi is becoming frustrated at the lack of larger scale change in the wake of the climate emergency. Over the years she has signed petitions and written to her representatives, then watched in dismay as each campaign failed to deliver real world carbon reduction, and as the government continued to issue new licenses for fossil fuel projects. Even her own employers have failed to engage with climate advocates pushing for further changes in local policy, changes that Kelechi believes are both achievable and necessary. Kelechi wonders what else she can do to set the UK – if not the world – on a path to net zero. 


Dilemma – Part one: 

Scrolling through a news website, Kelechi is surprised to see a photo of her friend and ex-colleague Amanda, in a report about climate protesters being arrested. Kelechi messages Amanda to check that she’s ok, and they get into a conversation about the protests. Amanda is part of a climate protest group of STEM professionals that engages in non-violent civil disobedience. The group believes that by staging direct action protests they can raise awareness of the climate emergency and ultimately effect systemic change.  

Amanda tries to convince Kelechi to join the group and protest with them. Amanda references the second principle of the Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering: “Respect for life, law, the environment and public good.” Amanda believes that it is ok to ignore the tenet about respect for the law in an effort to safeguard the other three, and says that there have been plenty of unjust laws throughout history that have needed to be protested in order for them to be changed for the public good. She also references another part of the Statement: that engineers should ”maximise the public good and minimise both actual and potential adverse effects for their own and succeeding generations”. Amanda believes that by protesting she is actually fulfilling her duty to uphold these principles.  

Kelechi isn’t sure. She has never knowingly broken the law before, and is worried about being arrested. Kelechi consults her friend Max, who is a director of a professional engineering institution, of which Kelechi is a member. Max, whilst she has some sympathies for the aims of the group, immediately warns Kelechi away from the protests. “Forget about being arrested; you could lose your job and end your career.”  


Optional STOP for questions and activities: 

1. Discussion: What personal values will Kelechi have to weigh in order to decide whether or not to take part in a civil disobedience protest? 

2. Discussion: Consider the tenet of the Statement of Ethical Principles “Respect for life, law, the environment and public good.” To what extent (if at all) do the four tenets of this ethical principle come into conflict with one another in this situation? Can you think of other professional situations in which they might conflict? 

3. Discussion: Is breaking the law always unethical? Are there circumstances when breaking the law might be the ethical thing to do in the context of engineering practice? What might these circumstances be? 

4. Discussion: To what extent (if at all) does the content of the Statement of Ethical Principles make a case for or against being part of a protest where the law is broken?  

5. Discussion: Following on from the previous question – does it make a difference what is being protested, if a law is broken? For example, is protesting fossil fuels that lead to climate change different from protesting unsafe but legal building practices, such as cladding that causes a fire risk? Why? 

6. Activity: Research other professional codes of engineering: do these have clear guidelines for this situation? Assemble a bibliography of other professional codes or standards that might be relevant to this scenario. 

7. Discussion: What are the potential personal and professional risks or benefits for Kelechi if she takes part in a protest where the law is broken? 

8. Discussion: From a professional viewpoint, should Kelechi take part in the protest? What about from a personal viewpoint? 


Dilemma – Part two: 

After much deliberation, Kelechi decides to join the STEM protest group. Her first protest is part of a direct action to blockade a busy London bridge. To her own surprise, she finds herself volunteering to be one of two protesters who will climb the cables of the bridge. She is reassured by the risk assessment undertaken by the group before selecting her. She has climbing experience (although only from her local leisure centre), and safety equipment is provided.  

On the day of the protest, Kelechi scales the bridge. The police are called and the press arrive. Kelechi stays suspended from the bridge for 36 hours, during which time all traffic waiting to cross the bridge is halted or diverted. Eventually, Kelechi is convinced that she should climb down, and the police arrest all of the protesters.  

Later on, Kelechi is contacted by members of the press, asking for a statement about her reason for taking part in the protest. Kelechi has seen that press coverage of the protest is so far overwhelmingly negative, and poll results suggest that the majority of the public see the protesters’ actions as selfish, inconvenient, and potentially dangerous, although some have sympathy for their cause. “What if someone died because an ambulance couldn’t use the bridge?” asks someone via social media. “What about the five million deaths a year already caused by climate change?” asks another, citing a recent news article 

Kelechi would like to take the opportunity to make her voice heard – after all, that’s why she joined the protest group – but she isn’t sure whether she should mention her profession. Would it add credibility to her views? Or would she be lambasted because of it? 


Optional STOP for questions and activities: 

1. Discussion: What professional principles or codes is Kelechi breaking or upholding by scaling the bridge?  

2. Activity: Compare the professional and ethical codes for civil engineers in the UK and elsewhere. How might they differ in their guidance for an engineer in this situation?  

3. Activity: Conduct a risk assessment for a) the protesters who have chosen to be part of this scenario, and b) members of the public who are incidentally part of this scenario. 

4. Discussion: Who would be responsible if, as a direct or indirect result of the protesters blocking the bridge, a) a member of the public died, or b) a protester died? Who is responsible for the excess deaths caused directly or indirectly by climate change? 

5. Discussion: How can Kelechi best convey to the press and public the quantitative difference between the short-term disruption caused by protests and the long-term disruption caused by climate change? 

6. Discussion: Should Kelechi give a statement to the press? If so, should she discuss her profession? What would you do in her situation? 

7. Activity: Write a statement for Kelechi to release to the press. 

8. Discussion: Suggest alternative ways of protesting that would have as much impact in the news but potentially cause less disruption to the public. 


Dilemma – Part three: 

Kelechi decides to speak to the press. She talks about the STEM protest group, and she specifically cites the Statement of Ethical Principles as her reason for taking part in the protest: “As a professional civil engineer, I have committed to acting within our code of ethics, which requires that I have respect for life, the environment and public good. I will not just watch lives be destroyed if I can make a difference with my actions.”  

Whilst her statement gets lots of press coverage, Kelechi is called out by the media and the public because of her profession. The professional engineering institution of which Kelechi is a member receives several complaints about her actions, some from members of the public and some from other members of the institution. “She’s bringing the civil engineering profession into disrepute,” says one complaint. “She’s endangering the public,” says another. 

It’s clear that the institution must issue a press release on the situation, and it falls to Kelechi’s friend Max, as a director of the institution, to decide what kind of statement to put out, and to recommend whether Kelechi’s membership of the institution could – or should – be revoked. Max looks closely at the institution’s Code of Professional Conduct. One part of the Code says that “Members should do nothing that in any way could diminish the high standing of the profession. This includes any aspect of a member’s personal conduct which could have a negative impact upon the profession.” Another part of the Code says: “All members shall have full regard for the public interest, particularly in relation to matters of health and safety, and in relation to the well-being of future generations.” 

As well as the institution’s Code of Conduct, Max considers the historic impact of civil resistance in achieving change, and how those engaging in such protests – such as the suffragettes in the early 1900s – could be viewed negatively at the time, whilst later being lauded for their efforts. Max wonders at what point the tide of public opinion begins to turn, and what causes this change. She knows that she has to consider the potential impacts of the statement that she puts out in the press release; how it might affect not just her friend, but the institution’s members, other potential protesters, and also her own career.  


Optional STOP for questions and activities: 

1. Discussion: Historically, has civil resistance been instrumental or incidental in achieving systemic change? Research to find out if and when engineers have been involved in civil resistance in the past. 

2. Discussion: Could Kelechi’s actions, and the results of her actions, be interpreted as having “a negative impact on the profession”? 

3. Discussion: Looking at Kelechi’s actions, and the institution’s code of conduct, should Max recommend that Kelechi’s membership be revoked? 

4. Discussion: Which parts of the quoted code of conduct could Max emphasise or omit in her press release, and how might this affect the tone of her statement and how it could be interpreted? 

5. Activity: Debate which position Max should take in her press release: condemning the actions of the protesters as being against the institution’s code of conduct; condoning the actions as being within the code of conduct; remaining as neutral as possible in her statement. 

6. Discussion: What are the wider impacts of Max’s decision to either remain neutral, or to stand with or against Kelechi in her actions?  

7. Activity: Write a press release for the institution, taking one of the above positions. 

8. Discussion: Which other authorities or professional bodies might be impacted by Max’s decision? 

9. Discussion: What are the potential impacts of Max’s press release on the following stakeholders, and what decisions or actions might they take because of it? Kelechi; Kelechi’s employer; members of the STEM protest group; the institution; institution members; government policymakers; the media; the public; the police; fossil fuel businesses; Max’s employers; Max herself. 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Collaborating with industry for teaching and learning, Knowledge exchange

Authors: Dr Corrina Cory (University of Exeter), Nick Russill (University of Exeter and Managing Director TerraDat UK Ltd.) and Prof Steve Senior (University of Exeter and Business Development Director at Signbox Ltd.)

Keywords: Gold Standard Project Based Learning, EntreComp, 21st Century Skills, Entrepreneur in Residence, Collaboration

Abstract: We have recently updated our engineering programmes at the University of Exeter (E21 – Engineering the Future) with a USP of Entrepreneurship at the core of the first two years to prepare students for research led learning and the future of jobs. We have worked closely with our Royal Society Entrepreneurs in Residence (EiR) to ensure authenticity in our ‘real-world’ Gold Standard Project Based Learning (GSPBL) activities. We would like to share this great collaboration experience with our EPC colleagues.



We have recently updated our engineering programmes at The University of Exeter (E21 – Engineering the Future). The Unique Selling Point (USP) of Entrepreneurship is embedded through Stage 1 and 2 using a new methodology combining Gold Standard Project Based Learning (GSPBL)[1] [image: Picture_1.jpg]) and EntreComp[2] ([image: Picture_2.png], the European Entrepreneurship Competence Framework).[3-5]

Gold Standard PBL – Seven Essential Project Design Elements [4]. Creative Commons License. Reference [1] – (2019). Gold Standard PBL: Essential Project Design Elements. [online] Available at: (Accessed 16 February 2022).


The EntreComp wheel: 3 competence areas and 15 competences [5]. Creative Commons License. Reference [2] – McCallum, E., Weicht, R., McMullan, L., Price, A. (2018). EntreComp into Action: get inspired, make it happen, M. Bacigalupo & W. O’Keeffe Eds., EUR 29105 EN, Publications Office of the European Union, Luxembourg, pg.13, pg. 15 & pg. 20.


The 21st Century Skills developed in the early stages of the programmes prepare students for research-led learning in later stages and future graduate employment.

The Royal Society Entrepreneur in Residence (EiR) scheme, aims to increase the knowledge and awareness of cutting-edge industrial science, research and innovation in UK universities. The scheme enables highly experienced industrial scientists and entrepreneurs to spend one day a week at a university developing a bespoke project.

In this context, the EiR scheme has grown ‘confidence in, and understanding of business and entrepreneurship among staff and students’ and we have collaborated with our EiRs to ensure authenticity in our ‘real-world’ project-based learning activities.[6] They have inspired students to pursue their own ideas and bring them to reality in ways that bring sustained regional and global benefit.



The Engineering Department worked with venture capitalist Alumni, Adam Boyden to create a MEng in Engineering & Entrepreneurship. The education team seized the opportunity during curriculum development to make the Stage 1 and 2 Entrepreneurship modules common to all engineering programmes to embed a USP of Entrepreneurship in E21.

Both our EiRs are natural educators and thrive on sharing their rich experiences and stories to mentor others through their entrepreneurship journeys.

They provide on-site technology demonstrations, prizes for 21st Century Skills and interactive workshops on entrepreneurship. This integration of EiRs into teaching and learning adds variety, and through the power of story, the students engage to a high level. Furthermore, their curiosity prompts them to construct and ask challenging questions.

The open-ended GSPBL driving questions allow groups to develop unique ideas. Most of the projects yielded excellent and highly original themes, some of which could have real value in the future should they be further developed.  

We have observed learning opportunities for inclusivity, listening, improvements in self-confidence and more free-thinking and ideation as a direct result of our methodology combining GSPBL and EntreComp.

Using this method and mapping competences using EntreComp should improve outcomes for graduates who gain the top employability skills required by 2025 e.g., critical thinking and analysis, problem-solving, self-management, active learning, resilience, stress tolerance and flexibility.[7] Students develop an appreciation and understanding of business start-ups, ideation and successful implementation of innovative research and development through their experiential learning.


Our EiRs have provided insights into what it takes to be an entrepreneur and have introduced energy, enthusiasm, creativity and innovative thought processes throughout both Entrepreneurship modules.

Nick Russill’s specific contributions include team building, planning, branding, entrepreneurial skills, innovation, business development, co-hosting project launch seminars, innovation workshops, project-based learning support sessions and mock investment pitch panels.

Steve Senior’s lectures Q&As and workshops include the beauty of failure, advanced Computer Aided Design (CAD)/Computer Aided Manufacturing (CAM), marketing and e-commerce. He mentors student teams on how to capitalise on limited resources during growth and explains risk analysis with case studies from his own companies.

The digital materials created for our blended updated programmes will remain a longer-term legacy of their involvement and provide resources available to be called on in future to sustain the impact of EiRs at Exeter.

Nick has commented that ‘my time as EiR with the Exeter engineering students has convinced me that GSPBL takes education to another level, and I wish it were more widespread in education curricula … The close association of learning with real-life applications and case studies has proved that students retain far more technical and theoretical information than they may do from more traditional methods’.

Students are surveyed at the start of Entrepreneurship 1 and the end of Entrepreneurship 2 in terms of their self-assessed ability to evidence aspects of EntreComp on their CV. Previous publications have illustrated an increase in competence over the 2 years of Entrepreneurship and we will continue to collect this data to evidence outcomes.[5]

Entrepreneurs in residence share their real-world experience and then stick around to build relationships with the staff, researchers and students. They become an integral part of the team. Student Feedback definitely proves that we’re helping to ignite sparks for a new generation of entrepreneurs. Student feedback includes:

‘Gain skills in areas concerning self-motivation and creativity’… ‘become comfortable with risk and uncertainty … a really good learning experience’ …’developing confidence and being able to trust yourself and take the initiative’… ‘good innovation and technical skills’ … ‘learning by doing is the only way for entrepreneurship and this course has given us a great environment and support to learn, fail, pivot and learn again’.

Staff and students have commented on the value of injecting ad hoc real-life anecdotes of problem-solving stories and learnings from experienced entrepreneurs which is unique, valuable and significantly enriches learning experiences.

Lessons and Future Work

An individual reflective work package report is submitted by all students at the completion of two years of entrepreneurship modules. This provides a period of reflection for students and a chance to showcase their journey including valuable learning through failure, personal contributions to the group’s success and professional development in terms of 21st Century Skills as defined by EnreComp.

Following panel Q&A at the EPC Crucible Project, future refinement includes reviewing possible additions to the reflective report and illustrating links between engineering competence and EntreComp to clearly signpost students to the relevance of Entrepreneurial 21st Century Skills for graduate employment, chartership and intrapreneurship. 


  1., 2019. Gold Standard PBL: Essential Project Design Elements. [online] PBLWorks. Available at: (Accessed 18 February 2022).
  2. European Commission, Joint Research Centre, Price, A., McCallum, E., McMullan, L., et al. (2018) EntreComp into action : get inspired, make it happen. Publications Office., pp.13, 15 & 20.
  3. Cory, C., Carroll, S. and Sucala, V., 2019. Embedding project-based learning and entrepreneurship in engineering education. In: New Approaches to Engineering Higher Education in Practice. Engineering Professors’ Council (EPC) and Institution of Engineering and Technology (IET) joint conference.
  4. Cory, C., Sucala, V. and Carroll, S., 2019. The development of a Gold Standard Project Based Learning (GSPBL) engineering curriculum to improve Entrepreneurial Competence for success in the 4th industrial revolution. In: Complexity is the new Normality.. Proceedings of the 47th SEFI Annual Conference, pp.280-291.
  5. Cory, C. and Cory, A., 2021. Blended Gold Standard Project Based Learning (GSPBL) and the development of 21st Century Skills – an agile teaching style for future online delivery. In: Teaching in a Time of Change. AMPS Proceedings Series 23.1., pp.207-217.
  6., 2022. Entrepreneur in Residence | Royal Society. (online) Available at: (Accessed 18 February 2022).
  7. World Economic Forum. 2020. The Future of Jobs Report 2020. [online] Available at: (Accessed 18 February 2022).


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Graduate employability and recruitment

Author: James Ford (University College London)

Keywords: Civil Engineering Design, Timber Design, Industry, Collaboration

Abstract: A project, developed jointly by UCL and engineers from ARUP, allowed students to work on redesigning the fire damaged roof of the Notre Dame Cathedral. Industry expertise complemented academic experience in civil engineering design to create a topical, relevant and creative project for students. The project combined technical learning in timber design with broader considerations such as costs, health and safety, buildability and environmental impacts. Final presentations being made to engineering teams at ARUP offices also developed wider professional skills.



Following the 2019 fire in the Notre Dame Cathedral, Civil Engineering Students at University College London (UCL) were tasked with designing a replacement. The project was delivered, in collaboration with engineers from ARUP, within a Design module in Year 2 of the programme. The project was run as a design competition with teams competing against one another. The project built on learning and design project experience built up during years 1 and 2 of the course.

The collaboration with ARUP is a long-standing partnership. UCL academics and ARUP engineers have worked on several design projects for students across all years of the Civil Engineering Programme.

The Brief

Instead of designing a direct replacement for the roof the client wanted to create a modern, eye-catching roof extension which houses a tourist space that overlooks the city. The roof had to be constructed on the existing piers so loading limits were provided. The brief recognised the climate emergency and a key criterion for evaluation was the sustainability aspects of the overall scheme. For this reason, it also stipulated that the primary roof and extension structure be, as far as practicable, made of engineered timber.


Figure 1. Image from the project brief indicating the potential building envelopes for the roof design


Given the location all entries had to produce schemes that were quick to build, cause minimal disruption to the local population, not negatively impact on tourism and, most importantly, be safe to construct.


Teams (of 6) were required to propose a minimum of 2 initial concept designs with an appraisal of each and recommendation for 1 design to be taken forward.

The chosen design was developed to include:

Teams had to provide a 10xA3 page report, a set of structural calculations, 2xA3 drawings and a 10-minute presentation.

Figure 2. Connection detail drawing by group 9



Course material was delivered over 4 sessions with a final session for presentations:

Session 1: Project introduction and scheme designing

Session 2: Timber design

Session 3: Construction and constructability

Session 4: Fire Engineering and sustainability

Session 5: Student Presentations

Sessions were co-designed and delivered by a UCL academic and engineers from ARUP. The sessions involved a mixture of elements incl. taught, tutorial and workshop time. ARUP engineers also created an optional evening workshop at their (nearby) office were groups or individuals could meet with a practicing engineer for some advice on their design.

These sessions built on learning from previous modules and projects.

Learning / Skills Development

The project aimed to develop skills and learning in the following areas:

Visiting the ARUP office and working with practicing engineers also enhanced student understanding of professional practice and standards.

Benefits of Collaborating

The biggest benefit to the collaboration was the reinforcement of design approaches and principles, already taught by academics, by practicing engineers. This adds further legitimacy to the approaches in the minds of the students and is evidenced through the application of these principles in student outputs.


Figure 3. Development of design concepts by group 12


The increased range in technical expertise that such a collaboration brings provides obvious benefit and the increased resource means more staff / student interaction time (there were workshops where it was possible to have one staff member working with every group at the same time).

Working with an aspirational partner (i.e. somewhere the students want to work as graduates) provides extra motivation to improve designs, to communicate them professionally and impress the team. Working and presenting in the offices of ARUP also helped to develop an understanding of professional behaviour.

Reflections and Feedback

Reflections and feedback from all staff involved was that the work produced was of a high quality. It was pleasing to see the level of creativity that the students applied in their designs. Feedback from students gathered through end of module review forms suggested that this was due to the level of support available which allowed them to develop more complex and creative designs fully.

Wider feedback from students in the module review was very positive about the project. They could see that it built on previous experiences from the course and enjoyed that the project was challenging and relevant to the real world. They also valued the experiences of working in a practicing design office and working with practicing engineers from ARUP. Several students posted positively about the project on their LinkedIn profiles, possibly suggesting a link between the project and employability in the minds of the students.


Figure 4. Winning design summary diagram by group 12


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Collaborating with industry for teaching and learning

Authors: Bob Tricklebank (Dyson Institute of Engineering and Technology) and Sue Parr (WMG, University of Warwick).

Keywords: Partnerships, Academic, Industry

Abstract: This case study illustrates how, through a commitment to established guiding principles, open communication, a willingness to challenge and be challenged, flexibility and open communication, it’s possible to design and deliver a degree apprenticeship programme that is more than the sum of its parts. 



Dyson is driven by a simple mission: to solve the problems that others seem to ignore.  From the humble beginnings of the world’s first bagless vacuum cleaner, Dyson is now a global research and technology company with engineering, research, manufacturing and testing operations in the UK, Singapore, Malaysia and the Philippines. The company employs 14,000 people globally including 6,000 engineers and scientists. Its portfolio of engineering expertise, supported by a £3 million per week investment into R&D, encompasses areas from solid-state batteries and high-speed digital motors to machine learning and robotics.

Alongside its expansive technology evolution, Dyson has spent the past two decades supporting engineering education in the UK through its charitable arm, the James Dyson Foundation. The James Dyson Foundation engages at all stages of the engineering pipeline, from providing free resources and workshops to primary and secondary schools to supporting students in higher education through bursaries, PhD funding and capital donations to improve engineering facilities.

It was against this backdrop of significant investment in innovation and genuine passion for engineering education that Sir James Dyson chose to take a significant next step and set up his own higher education provider: the Dyson Institute of Engineering and Technology.

The ambition was always to establish an independent higher education provider, able to deliver and award its own degrees under the New Degree Awarding Powers provisions created by the Higher Education and Research Act 2017. But rather than wait the years that it would take for the requisite regulatory frameworks to appear and associated applications to be made and quality assurance processes to be passed, the decision was made to make an impact in engineering education as quickly as possible, by beginning delivery in partnership with an established university.

Finding the right partner

The search for the right university partner began by setting some guiding principles; the non-negotiable expectations that any potential partner would be expected to meet, grounded in Dyson’s industrial expertise and insight into developing high-calibre engineering talent.

1.An interdisciplinary programme

Extensive discussions with Dyson’s engineering leaders, as well as a review of industry trends, made one thing very clear: the engineers of the future would need to be interdisciplinarians, able to understand mechanical, electronic and software engineering, joining the dots between disciplines to develop complex, connected products. Any degree programme delivered at the Dyson Institute would need to reflect that – alongside industrial relevance and technical rigour.

2. Delivered entirely on the Dyson Campus

It was essential that delivery of the degree programme took place on the same site on which learners would be working as Undergraduate Engineers, ensuring a holistic experience. There could be no block release of learners from the workplace for weeks at a time: teaching needed to be integrated into learners’ working weeks, supporting the immediate application of learning and maintaining integration into the workplace community.  

3. Actively supported by the Dyson Institute

This would not be a bipartisan relationship between employer and training provider. The fledgling Dyson Institute would play an active role in the experience of the learners, contributing to feedback and improvements and gaining direct experience of higher education activity by shadowing the provider.

WMG, University of Warwick

Dyson entered into discussions with a range of potential partners. But WMG, University of Warwick immediately stood out from the crowd.

Industrial partnership was already at the heart of WMG’s model. In 1980 Professor Lord Kumar Bhattacharyya founded WMG to deliver his vision to improve the competitiveness of the UK’s manufacturing sector through the application of value-adding innovation, new technologies and skills development. Four decades later, WMG continues to drive innovation through its pioneering research and education programmes, working in partnership with private and public organisations to deliver a real impact on the economy, society and the environment.

WMG is an international role model for how universities and businesses can successfully work together; part of a Top 10 UK ranked and Top 100 world-ranked university.

WMG’s expertise in working with industrial partners meant that they understood the importance of flexibility and were willing to evolve their approach to meet Dyson’s expectations – from working through the administrative challenge of supporting 100% delivery on the Dyson Campus, to developing a new degree apprenticeship programme.

Academics at WMG worked closely with Dyson engineers, who offered their insight into the industrial relevance of the existing programme – regularly travelling to WMG to discuss their observations in person and develop new modules. This resulted in a degree with a decreased focus on group work and project management, skills that learners would gain in the workplace at Dyson, and an increased focus on software, programming and more technically focused modules.

Importantly, WMG was supportive of Dyson’s intention to set up an entirely independent higher education provider. Rather than see a potential competitor, WMG saw the opportunity to play an important part in shaping the future of engineering education, to engage in reciprocal learning and development alongside a start-up HE provider and to hone its portfolio for future industrial partnerships.

The programme

In September 2017, the Dyson Institute opened its doors to its first cohort of 33 Undergraduate Engineers onto a BEng in Engineering degree apprenticeship, delivered over four years and awarded by the University of Warwick.

Two days per week are dedicated to academic study. The first day is a full day of teaching, with lecturers from WMG travelling to the Dyson Campus to engage in onsite delivery. The second day is a day of self-study, with lecturers available to answer questions and help embed learning. The remaining three days are spent working on live engineering projects within Dyson.

The first two years of the programme are deliberately generalist, while years three and four offer an opportunity to specialise. This academic approach is complemented in the workplace, with Undergraduate Engineers spending their first two years rotating through six different workplace teams, from electronics and software to research and product development, before choosing a single workplace team in which to spend their final two years. Final year projects are based on work undertaken in that team.

The Dyson Institute enhances WMG’s provision in a variety of ways, including administration of the admissions process, the provision of teaching and learning facilities, pastoral support, health and wellbeing support, social and extra-curricular opportunities, monitoring of student concerns and professional development support.  

Key enhancements include the provision of Student Support Advisors (one per cohort), a dedicated resource to manage learners’ workplace experience, quarterly Wellbeing and Development Days and the Summer Series, a professional development programme designed to address the broader set of skills engineers need, which takes the place of academic delivery across July and August.

Continuous improvement  

The collaborative partnership between Dyson, the Dyson Institute and WMG, the University of Warwick did not end when delivery began. Instead, the focus turned to iteration and improvement.

Dyson Institute and WMG programme leadership hold regular meetings to discuss plans, progress and challenges. These conversations are purposefully frank, with honesty on both sides allowing concerns to be raised as soon as they are noted. An important voice in these conversations is that of the student body, whose ‘on the ground experience’ is represented not only through the traditional course representatives, but through stream and workplace representatives.

Even as the Dyson Institute has begun independent delivery (it welcomed its first Dyson Institute-registered Undergraduate Engineers in September 2021), both partners remain dedicated to improving the student experience. The current focus is on increasing WMG’s onsite presence as well as the regularity of joint communications to the student body, with a view to supporting a more streamlined approach to challenge resolution.


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Research

Author: Dr Salma .M.S. Al Arefi (University of Leeds)

Keywords: Science and Social Capitals, Sense of Belonging, Intersectionality, Student Success

Abstract: Being in a marginalised position due to feeling of otherness because of one’s gender as well as intersecting identity can create psychological hidden barriers. Coupled with science and social capitals such variables are key determines of student’s self-concept of engineering self-efficacy, competencies, and abilities. The impact of being othered may not only be limited to interest for participation in engineering but could extend beyond and significantly affect student engagement, success, and affiliation with engineering. This could impact students’ sense of belonging to their degree programme, university, and discipline, leading to adverse impacts ranging from low engagement to low attainment, or discontinuations. Such experiences can be greatly exacerbated for students with intersecting identities (‘double, triple, jeopardy’), e.g., a female student who identifies as a first-generation, working-class, disabled, commuter, carer, neurodiverse or mature student. This report presents work on progress on a student-centred interventional case study on exploring the impact of the intersectional lived experiences of underrepresented, disadvantaged and minoritised student groups in engineering beyond obvious gender and pre-university qualifications characteristics.


1.     Problem Statement

Initiatives on closing the technical skills gap remain limited to access to either engineering education or the workplace.  Identifying and supporting students facing barriers to continuation can be key to enhancing student success in a way that bridges the gap between the ignition of interest and transition to the engineering industry.  Early but sustained engagement throughout the life cycle of an engineering student is however vital to cultivate students’ sense of belonging to their modules, degree programmes and the wider industry. That would in turn support the formation of their engineering identity.

Gendered identity, as well as pre-university qualifications, are yet perceived to exert the strongest force for marginalisation and underrepresentation in engineering education and the workplace. The impact intersecting identities can have in relation to ignition of interest, participation, as well as the formation of engineering identity, also need consideration.  Along with gender, characteristics such as race, class, age, or language can have an added impact on already minoritized individuals (the ‘double, triple, quadrant…. jeopardy’), whereby the experience of exclusion and otherness can be exacerbated by overlapping marginalised identities. Coupled with the self-concept of own science capital, efficacies, and competencies [1-2], the formation of engineering identity could be expressed as a direct function of a sense of inclusion or otherwise exclusion [3]. Within this context, such an inherent feeling of connectedness describes the extent to which the lived experience of individuals is acknowledged valued and included [4], which is a healthy fertilizer for the formation of engineering identity. Perceived threats to one’s belonging due to a feeling of exclusion or rejection could on the contrary negatively impact one’s perception of self-efficacy and hence affiliation with engineering.

2.     Project Aims

The role of effect in learning to foster a sense of belonging and enhance a coherent sense of self and form the engineering identity has attracted growing pedagogical research interest. In academia, a sense of belonging has been shown to excrete the largest force on one’s intent to participate in engineering and to be the key sustainable vehicle for successful progressions. Because engineering learning activities are pursued in complex social interactions, acknowledging, and understanding the role of belonging in academic success is key to fostering an inclusive culture that encourages and recognises contributions from all.  It is hoped that the project outcomes can advise on understanding to support underrepresented, marginalised and minoritised students overcome self-perceived psychological barriers to their degree programme, university, or engineering workplace. The intersectional lens of the project is aimed to uncover key culprits that impact engineering identity formation for traditionally underrepresented, disadvantaged and minoritised students beyond obvious gender and pre-university education characteristics.

Outcomes will role model fostering an inclusive culture where engineering students from all backgrounds feel that they belong in an effort to support engineering higher education institutions to adhere to the changes introduced by the Engineering Council to the U.K. Standards for Professional Engineering Competency and Commitment around recognising inclusivity and diversity. This should be applicable to other STEM-related disciplines.

3.     Decolonial partnership

The project centres on students’ voices through a decolonial participation approach that acknowledges participants as co-researchers and enables them to take an active role in the co-creation of the project deliverables. Participation will be incentivised through recognition (authorship, certifications) as well as financial incentives.  The use of evidence-based active listening to enable students to share their lived experiences of belonging through storytelling and story sharing is hoped to create a safe space to empower and acknowledge student voices so that every student feel that they matter to their degree programme, university, and discipline. That in turn would cultivate authentic learner identity and a sense of belonging.

4.     Outcomes and future work

The findings are hoped to advise on a sustainable support approach whereby early and sustained engagement (throughout the student lifecycle from access to continuation, attainment, and progression) are prioritised to facilitate the transition of students into and from Engineering. Co-created artefacts from the project will be used to support access and continuation by providing examples of lived experiences for prospective students to associate with. Fostering a sense of belonging is hoped to have a direct impact on learner engagement, success, and attainment as well as enhancing students’ ability to progress towards achieving their unique goals beyond their degree.

The second phase of the 2-year project will involve student recruitment and selection, interventional listening, storytelling-based approaches and co-creation of artefacts.


The work is carried out as part of the fellowship of the Leeds Institute for Teaching Excellence in partnership with Dr Kendi Guantai, from Leeds Business School, Marketing Division and Dr Nadine Cavigioli Lifelong Learning Centre at the University of Leeds.



Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Knowledge exchange

Authors: Prof Robert Hairstans (New Model Institute for Technology and Engineering), Dr Mila Duncheva (Stora Enso), Dr Kenneth Leitch (Edinburgh Napier University), Dr Andrew Livingston (Edinburgh Napier University), Kirsty Connell-Skinner (Edinburgh Napier University) and Tabitha Binding (Timber Development UK)

Keywords: Timber, Built Environment, Collaboration, New Educational Model

Abstract: The New Model Institute for Technology and Engineering, Edinburgh Napier University and Timber Development UK are working with external stakeholders to enable an educational system that will provide comprehensive training in modern methods of timber construction. A Timber Technology Engineering and Design (TED) competency framework has been derived and a UK wide student design competition will run in the 1st quarter of 2022 as part of the process to curate the learner content and enable this alternative approach to upskilling. The EPC will gain an understanding of this alternative approach to creating an educational model by means of industry engagement. This new approach has been made possible via establishing a collaborative framework and leveraging available funding streams via the partners. This will be showcased as a methodology for others to apply to their own contexts as well as offer opportunity for knowledge and value exchange.



Edinburgh Napier University (ENU), The New Model Institute for Technology and Engineering (NMITE) and Timber Development UK (TDUK) are working with external stakeholders to enable an educational system (Figure 1) that will provide comprehensive training in modern methods of timber construction. This case study presents an alternative approach to creating this Timber Technology Engineering and Design (TED) educational model by means of industry engagement and pilot learning experiences. This new approach has been made possible by establishing a collaborative framework and leveraging available funding streams via the partners.

Figure 1 – Approach to enabling Timber TED Educational System.


Project Aims

The aim of establishing Timber TED is to provide built environment students and professionals with a comprehensive suite of online credit bearing flexible training modules to upskill in modern timber construction techniques. To align the modules with industry need the learning content is to be underpinned by a competency framework identifying the evidence-based technical knowledge and meta skills needed to deliver construction better, faster and greener. The training modules are to be delivered in a blended manner with educational content hosted online and learners assessed by ‘learning by doing’ activities that stimulate critical thinking and prepare the students for work in practice (Jones, 2007).

Uniting industry education and training resources through one course, Timber TED will support learners and employers to harness the new knowledge and skills required to meet the increasing demand for modern timber construction approaches that meet increasingly stringent quality and environmental performance requirements.

The final product will be a recognised, accredited qualification with a bespoke digital assessment tool, suitable for further and higher education as well as employers delivering in-house training, by complementing and enhancing existing CPD, built environment degrees and apprenticeships.

The Need of a Collaborative Approach

ENU is the project lead for the Housing Construction & Infrastructure (HCI) Skills Gateway part of the Edinburgh & Southeast Scotland City Region Deal and is funded by the UK and Scottish Governments. Funding from this was secured to develop a competency framework for Timber TED given the regional need for upskilling towards net zero carbon housing delivery utilising low carbon construction approaches and augmented with addition funding via the VocTech Seed Fund 2021. With the built environment responsible for 39% of all global carbon emissions, meeting Scotland’s ambitious target of net zero by 2045 requires the adoption of new building approaches and technologies led by a modern, highly skilled construction workforce. Further to this ENU is partnering with NMITE to establish the Centre for Advanced Timber Technology (CATT) given the broader UK wide need. Notably England alone needs up to 345,000 new low carbon affordable homes annually to meet demand but is building less than a third of this (Miles and Whitehouse, 2013). The educational approach of NMITE is to apply a student-centric learning methodology with a curriculum fuelled by real-world challenges, meaning that the approach will be distinctive in the marketplace and will attract a different sort of engineering learner. This academic partnership was further triangulated with TDUK (merged organisation of TRADA and Timber Trades Federation) for UK wide industry engagement. The partnership approach resulted in the findings of the Timber TED competency framework and alternative pedagogical approach of NMITE informing the TDUK University Design Challenge 2022 project whereby inter-disciplinary design teams of 4–8 members, are invited to design an exemplary community building that produces more energy than it consumes – for Southside in Hereford. The TDUK University Design challenge would therefore pilot the approach prior to developing the full Timber TED educational programme facilitating the development of educational content via a webinar series of industry experts.

The Role of the Collaborators

The project delivery team of ENU, NMITE and TDUK are working collaboratively with a stakeholder group that represents the sector and includes Structural Timber Association, Swedish Wood, Construction Scotland Innovation Centre, Truss Rafter Association and TRADA. These stakeholders provide project guidance and are contributing in-kind support in the form of knowledge content, access to facilities and utilisation of software as appropriate.

Harlow Consultants were commission to develop the competency framework (Figure 1) via an industry working group selected to be representative of the timber supply chain from seed to building. This included for example engineered timber manufacturers, engineers, architects, offsite manufacturers and main contractors.


Figure 2 – Core and Cross-disciplinary high level competency requirements


The Southside Hereford: University Design Challenge (Figure 3) has a client group of two highly energised established community organisations Growing Local CIC and Belmont Wanderers CIC, and NMITE, all of whom share a common goal to improve the future health, well-being, life-chances and employment skillset of the people of South Wye and Hereford. Passivhaus Trust are also a project partner providing support towards the curation of the webinar series and use of their Passivhaus Planning software.


Figure 3 – TDUK, ENU, NMITE and Passivhaus Trust University Design Challenge


Outcomes, Lessons Learned and Available Outputs

The competency framework has been finalised and is currently being put forward for review by the professional institutions including but not limited to the ICE, IStructE, CIAT and CIOB. A series of pilot learning experiences have been trialled in advance of the UK wide design challenge to demonstrate the educational approach including a Passivhaus Ice Box challenge. The ice box challenge culminated in a public installation in Glasgow (Figure 4) presented by student teams acting as a visual demonstration highlighting the benefits of adopting a simple efficiency-first approach to buildings to reduce energy demands. The Timber TED competency framework has been used to inform the educational webinar series of the UK wide student design competition running in the 1st quarter of 2022. The webinar content collated will ultimately be used within the full Timber TED credit bearing educational programme for the upskilling of future built environment professionals.


Figure 4 – ICE box challenge situated in central Glasgow


The following are the key lessons learned:

Currently available outputs to date:


  1. Jones, J. (2007) ‘Connected Learning in Co-operative Education’, International Journal of Teaching and Learning in Higher Education, 19(3), pp. 263–273.
  2. Miles, J. and Whitehouse, N. (2013) Offsite Housing Review, Department of Business, Innovation & Skills. London


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr Sarah Junaid (Aston University); Professor Mike Sutcliffe (TEDI-London); Jonathan Truslove (Engineers Without Borders UK); Professor Mike Bramhall (TEDI-London).

Keywords: Active verbs; Bloom’s Taxonomy; learning outcomes; learning objectives; embedding ethics; project based learning; case studies; self-reflection; UK-SPEC; AHEP; design portfolio; ethical approval checklist and forms; ethical design.

Who this article is for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design. It will also help prepare students with the integrated skill sets that employers are looking for.



Engineering can have a significant impact on society and the environment, in both positive and negative ways. To fully understand the implications of engineering requires navigating complex, uncertain and challenging ethical issues. It is therefore essential to embed ethics into any project or learning outcome and for engineering professionals and educators to operate in a responsible and ethical manner.

The fourth iteration of the Accreditation of Higher Education Programmes (AHEP) reflects this importance to society by strengthening the focus on inclusive design and innovation, equality, diversity, sustainability and ethics, within its learning outcomes. By integrating ethics into engineering and design curricula, graduates develop a deeper comprehension of the ethical issues inherent in engineering and the skill sets necessary to navigate complex ethical decision-making needed across all sectors.



There is growing advocacy for bringing engineering ethics to the fore in engineering programmes. At the policy level, this is evident in three general areas:

  1. UK-SPEC and accreditation bodies are identifying ethics as one of the core learning outcomes and competencies in accreditation documents.
  2. The inclusion of more descriptive competencies that expand on engineering ethics.
  3. The fourth iteration of AHEP standards reflecting the importance of societal impact in engineering.

However, to translate the accreditation learning outcomes and their intentions to an engineering programme requires a duty of care by those responsible for programme design and development. The following are points for consideration:


Curriculum structure:

In the UK-SPEC (4th edition) guidance the Engineering Council states: “Engineering professionals work to enhance the wellbeing of society. In doing so they are required to maintain and promote high ethical standards and challenge unethical behaviour.”

In AHEP 4, students must meet the following learning outcome: “Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct”

So, when designing a new programme, ethics should ideally be built into the learning outcomes of the programme and modules at the early design stage and consistently be emphasised throughout. To ensure ethics are embedded, students should be required to consider the outputs of their project work through a societal or community lens, especially if they are undertaking projects with a practical delivery of ethics such as, say, designing for older people in care homes.

For existing programmes, ethics could be most readily introduced through a stand-alone ethics module. It is better, however, for ethics to be embedded across the whole programme, encouraging a holistic ‘ethical considerations mindset’ as a ‘golden thread’ across, and within, all student project work (Hitt, 2022). Minor or major modifications could be made to programmes to ensure that ethics is considered and emphasised, such as through the use of active verbs that embed critical reflections of design. For programmes with a large project-based learning component, ethical considerations should be required at the initial stage of all projects.


Learning and teaching activities:

In all efforts to embed ethics in engineering education, there should be a focus on constructively aligning teaching activity to learning outcomes. Examples include: employing user-centred design and/or value-sensitive design approaches and case studies for technical and non-technical considerations, using empathy workshops for ethical design, and ensuring ethical considerations are included in problem statements and product design specifications for decision-making. The use of self-reflection logs and peer reflections for team working can also be useful in capturing ethical considerations in a team setting and for addressing conflict resolutions.

A pragmatic step for programmes that use project-based learning is to encourage these ethical discussions at the beginning of all project work and to return to these questions and considerations during the course of the project. Reflecting on ethics throughout will lead to an ethical mindset, a foundation that students will build on throughout their subsequent careers.

One way of ensuring this for students is to complete an ethical scrutiny checklist, which, when completed, is then considered by a departmental ethics committee. The filter questions at the start of an ethics scrutiny submission would help determine the level of review required. Projects with no human participants could be approved following some basic checks. In some universities it has become policy for ethical scrutiny to be required for all group and individual project work such as problem-based learning projects, final year degree projects, and MSc and PhD research projects. For projects that collaborate with the Health Research Authority (HRA), it is a requirement that scrutiny is through their own HRA committee and it is good practice to put these types of projects initially through a departmental and/or university ethics committee as well. Having students go through this process is a good way of revealing the ethical implications of their engineering work.



Closing the constructive alignment triangle requires assessments that are designed to utilise learning and teaching activities and to demonstrate the learning outcomes. The challenging question is: How can ethics be evaluated and assessed effectively? One solution is through using more active verbs that demonstrate ethical awareness with outputs and deliverables. Examples where this could be applied include:

For more information on methods for assessing and evaluating ethics learning, see this related article in the engineering ethics toolkit: Methods for assessing and evaluating ethics learning in engineering education.



Using accreditation documentation to develop effective engineering programmes requires engaging beyond the checklists, thereby becoming more accustomed to viewing all competencies through an ethical lens. At programme design and module level, it is important to focus on constructively aligning the three key elements: learning outcomes written through an ethical lens, learning and teaching activities that engage with active verbs, and assessments demonstrating ethical awareness through a product, process, reflection and decisions.



Davis, M. (2006) ‘Integrating ethics into technical courses: Mirco-insertion’, Science and Engineering Ethics, 12(4), pp.717-730.

Gwynne-Evans, A.J, Chetty, M. and Junaid, S. (2021) ‘Repositioning ethics at the heart of engineering graduate attributes’, Australasian Journal of Engineering Education, 26(1), pp. 7-24.

Hitt, S.J. (2022) ‘Embedding ethics throughout a Master’s in integrated engineering curriculum’, International Journal of Engineering Education, 38(3).

Junaid, S., Kovacs, H., Martin, D. A., and Serreau, Y. (2021) ‘What is the role of ethics in accreditation guidelines for engineering programmes in Europe?’, Proceedings SEFI 49th Annual Conference: Blended Learning in Engineering Education: challenging, enlightening – and lasting?, European Society for Engineering Education (SEFI), pp. 274-282.


Additional resources:


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website