PHEE Annual Conference 2016 The future of engineering and Technology Major Engineering Opportunities 13th January 2016

Tidal Energy: Prospect for the future ?

Chris Binnie FREng

Previously chairman of the DECC Engineering & Technical Expert Panel for Severn Tidal

Energy Studies.

chrisbinnie@btopenworld.com

Tidal range map around UK

Mean Spring Tidal Range (m)		
	Mean Spring Tidal Range	
5 - 10 7 - 8		
	*knetes	

Ways of harnessing tidal energy

- Tidal stream
- Tidal barrages
- Tidal lagoons

Tidal stream device

MCT Seagen 2MW device

Deltastream prototype device

3 no 15m dia rotors gives 1.2 MW, Needs minimum 25m depth at low tide Awaiting installation in Ramsey sound.

Kepler prototype device

10m dia, 60m long, 6 MW

Tidal stream around UK

Tidal stream sites

Most sites would have expensive grid connection costs

Tidal stream sites theoretical output

Site Name	Area	Resource (TWh/year)	
Pentland Skerries	Pentland Firth	3.9	
Strøma	Pentland Firth	2.8	
Duncansby Head	Pentland Firth	2.0	
Casquets	Alderney	1.7	
South Ronaldsay	Pentland Firth	1.5	
Ноу	Pentland Firth	1.4	
Race of Alderney	Alderney	1.4	
South Ronaldsay	Pentland Firth	1.1	
Rathlin Island	North Channel	0.9	
Mull of Galloway	North Channel	.8	

Electricity transmission network

Potential areas for tidal stream

Total potential energy output 0.8TWh/year But need to avoid navigational channels depths generally less than the 30m required.

Ramsey Sound tidal stream site

Case Study – Ramsey Sound, Pembrokeshire: Spatially-Varying Velocities

Ramsey Sound

Only 2% of the area of the Sound is suitable

- Turbines like clean, uniform flow
- Turbulence is ; difficult to quantify /

Tidal barrages Carew Mill Pembrokeshire, 16th century corn grinding

Severn Barrage

Cardiff-Weston line, 6,000 MW, 16TWh/year, cost £25bn

2-dimensional analysis

Fig. 8. Sketch of the domain decomposition and grid refinement.

Modes of operation Ebb generation.

Modes of operation Ebb and flood generation

Water levels and Power Output

Ebb Only
48.8 GWh/24.8h
5.2 m mean tide
High tide 4.6 m
Power for 11h

Two-Way
48.4 GWh/24.8h
4.4 m mean tide
High tide 3.2 m
Power for 15h

Mitigation pumping

Figure 1 B (Mitigation pumping)

Power from a combination of schemes

Severn barrage ebb/flood, Swansea, and Clwyd lagoons

Tidal Power generation

Double regulated bulb turbine

La Rance, Brittany

240 MW, Operating since 1966, cheapest electricity in Europe

Rance Barrage

La Rance tidal power scheme

- Minimal operational problems/maintenance
- Tourist attraction
- Road connection
- Unknown environmental impact

General issues for barrages

- Impedance of navigation
- Reduction of high tide at upstream ports
- Some loss of intertidal habitat
- Effect on sea bird feeding ground
- Some mortality of migratory fish
- High construction costs.
- Scale up factor

Land at risk of inundation

Potential tidal lagoons

Characteristics of tidal energy lagoons

- D shaped lagoon
- Long lagoon walls
- Can avoid navigation and port impact
- Less impact on migratory fish
- Greater risk of siltation.
- Generally higher unit cost.

Swansea Bay lagoon

240 MW, 0.4TWh/year, cost £1bn, has planning permission, negotiating contract for difference.

Cardiff lagoon 2,700MW, 5.2TWh/year, under study.

Lagoon wall

- Dredged sand from inside the lagoon
- Smaller waves, smaller armour rock but higher tides at Cardiff as compared to Swansea

TDAL LAGOOR

Armour rock sourced from Dean Quarry and Norway

Tidal pumping sedimentation Cardiff lagoon 4-10Mm3/year

Lagoons v barrage

Power and energy output estimates

Note. The estimates are from different sources with different assumptions.

Scheme	Power GW	Energy TWh/year	Capital cost £bn
La Rance barrage	0.24		Built 1960s
Swansea Bay lagoon	0.32	0.54	1
Bridgewater Bay lagoon	3.6	6.2	12
North Wales lagoons	2.4	3	
Cardiff lagoon	2.7	5.1	7
Newport lagoon	1.2	2.3	
Cardiff-Bristol barrage	8.6	15.6	23

Overseas opportunities

Conclusions of tidal energy

- Tidal stream small energy output
- Tidal range could provide about 7% of UK energy need
- Tidal range uses proven technology
- Predictable power about 14 hours a day
- Power gap 2-3 hours each tide, but overlapping schemes can reduce effect .
- Significant environmental impacts.
- Protects from sea level rise/storm surge, coastal flooding.
- Similar cost to offshore wind, but tidal is predictable.
- Long asset life but need to future proof.

PHEE Annual Conference 2016 The future of engineering and Technology Major Engineering Opportunities 13th January 2016

Tidal Energy: Prospects for the future

Chris Binnie FREng

Previously chairman of the DECC Engineering & Technical Expert Panel for Severn tidal

energy studies.

chrisbinnie@btopenworld.com

Turbine cross section

North Wales lagoons 4 hours out of phase with the Severn Potential energy output 3TWh/yr

Decreasing carbon emissions to 2050 could double electricity demand

Typical Energy Scenario to achieve 80% reduction in carbon emissions

