Undergraduate retention in Engineering

Ruth Woodfield, University of St Andrews May $22^{\text {nd }} 2015$

Context

- Participation increased significantly in past decades
- And retention levels improved considerably
- However, students from diverse backgrounds persist in HE at different rates, and disciplines themselves retain students at different rates

Data

- HEA project on 2010/2011 HESA data
- Only students taking single-discipline programmes
- Disciplinary boundaries and broad subject areas (e.g. STEM) are associated with different retention (and attainment) patterns

Disciplines - student body variation

- Student body varies significantly across disciplines
- And students bring a variety of characteristics with them to study that increase their vulnerability to withdrawal e.g. being:
- a man
- from some BME backgrounds
- from lower socio-economic background
- older
- part-time
- But disciplines also contribute to different patterns of retention, both independently and when interacting with student characteristics

Withdrawal

- Different categories of withdrawal
- Here focusing on withdrawal without any qualification or without the degree qualification that they were intending to study for

Engineering compared to other disciplines

- Engineering had a retention rate of 93% against the sector average of 94%
- below some STEM disciplines e.g. Maths \& Stats (96\%) but above other sciences e.g. Computer Science (91\%)

Gender

- Engineering is among the most male-dominated of the disciplines - men account for 86% of Engineering students against a sector average of 43%
- Men are more likely to withdraw in most disciplines, including Engineering

	$\frac{0}{\mathrm{o}}$		$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \vdots \\ & \overline{0} \\ & \hline \end{aligned}$		$$			$\begin{aligned} & \bar{j} \\ & \infty \\ & \infty \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \frac{0}{0} \\ & \stackrel{0}{5} \\ & \stackrel{1}{0} \end{aligned}$	흘 \% \%
Men	6\%	7\%	10\%	7\%	4\%	5\%	2\%	6\%	6\%	4\%	7\%
Women	5\%	6\%	8\%	5\%	3\%	3\%	1\%	6\%	4\%	4\%	5\%

Age

- Against a sector average of 40\%, Engineering has less mature students (27\%) than many disciplines
- Mature students more likely to withdraw in most disciplines including Engineering

	$\frac{0}{0}$		$\begin{aligned} & \text { 'ठ } \\ & 0 \\ & \text { O } \\ & \text { E } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 이 } \\ & \text { 릉 } \\ & \text { © } \\ & \text { 응 } \\ & \mathbf{7} \end{aligned}$	$\stackrel{\text { II }}{\text { Iㅡㄴ }}$	$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	훙 0 0 0 0	$\begin{aligned} & \text { B } \\ & 0 \\ & \infty \\ & 0 \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \text { 잉 } \\ & \text { o } \\ & \text { o } \\ & \frac{\pi}{0} \\ & 6 \\ & 0 \end{aligned}$		흥 ¢ O
Traditional	5\%	6\%	9\%	6\%	3\%	4\%	1\%	5\%	4\%	5\%	5\%
Mature	7\%	8\%	10\%	9\%	4\%	4\%	2\%	11\%	5\%	4\%	7\%

Ethnicity

- Against a sector average of 18% BME students, Engineering has 20\% BME students (not including non-UK domiciled and other 'unknowns')
- Overall 6\% of students identifying as 'White' withdraw against 8% of students identifying as BME
- Engineering loses 7\% of 'White’ students and 9% of BME students

Socio-economic class

- Engineering has 27% of students who identify as from socio-economic classes 1\&2 against a sector average of 25%
- Students from Socio-economic classes 3-9 are slightly more likely to withdraw and this is the case in Engineering

	$\frac{\curvearrowleft}{\circ}$	若 흘 m	$\begin{aligned} & \overline{5} \\ & \text { 응 } \end{aligned}$	는 을 흠 푼	M		흉 $\frac{0}{0}$ $\frac{0}{2}$		흥 응 은 둥	\%	흥
SEC 182	4\%	5\%	8\%	5\%	2\%	4\%	1\%	4\%	4\%	3\%	5\%
SEC 3-9	6\%	7\%	10\%	7\%	3\%	4\%	1\%	6\%	5\%	6\%	6\%
Unknown	6\%	7\%	9\%	7\%	4\%	4\%	2\%	8\%	5\%	4\%	7\%

Disability

- Against a sector average of 91% of students with No Known Disability, Engineering has 93\% of students in this category, with 4% of those registered as having a disability registered as having a 'Specific Learning Disability'
- Students with disabilities are no more likely to withdraw in most disciplines, including Engineering

Mode of study

- 20\% of Engineering students study part-time against a sector average of 31\%
- Part-time students are more likely to withdraw, this is more marked in Engineering

	$\begin{aligned} & \frac{\omega}{0} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \text { 荷 } \\ & \text { 言 } \end{aligned}$			$\begin{aligned} & \text { II } \\ & \text { 핑 } \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	눟 $\stackrel{1}{8}$ 0 	$\begin{aligned} & \text { do } \\ & 0 \\ & \infty \\ & \stackrel{\infty}{0} \end{aligned}$		$\begin{aligned} & \text { ס } \\ & \stackrel{0}{3} \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$	-
Full-time	5\%	6\%	9\%	6\%	3\%	4\%	1\%	5\%	5\%	5\%	5\%
Part-time	8\%	8\%	10\%	10\%	4\%	3\%	4\%	12\%	4\%	3\%	8\%

Country of domicile

- Against a sector average of $89 \%, 77 \%$ of students in Engineering are domiciled in UK before they start their degree
- Non-EU Engineering students are slightly less likely to withdraw than the sector average, but EU and UK students have slightly higher rates

	$\begin{aligned} & \frac{0}{0} \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { 'ভ } \\ & 0 \\ & \text { o } \\ & \bar{Z} \\ & 0 \end{aligned}$		$\begin{gathered} \text { M } \\ \text { III } \\ \hline \end{gathered}$				$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \text { O } \\ & \frac{\pi}{0} \\ & 0 \\ & 0 \end{aligned}$		능 ¢ ¢
Non-EU	5\%	5\%	10\%	5\%	5\%	4\%	2\%	6\%	5\%	2\%	6\%
EU	5\%	5\%	6\%	7\%	4\%	6\%	2\%	7\%	6\%	6\%	5\%
UK	5\%	7\%	9\%	7\%	3\%	4\%	1\%	6\%	4\%	4\%	6\%

UCAS points attained

- Overall, students with less UCAS points are more likely to withdraw, and this is more marked in Engineering

0

Summary - areas of specific concern for Engineering

- Gender - performing at sector average and doing well against some STEM disciplines e.g.
Computer Science, and on transition to professional discipline-related work
- Age - Engineering sees slightly elevated levels of withdrawal for Mature students
- Ethnicity - Engineering sees slightly elevated levels of withdrawal for BME students
- Socio-economic class - Engineering has slightly elevated levels of students withdrawing from socioeconomic classes 3-9
- Disability is not associated with increased withdrawal in Engineering
- Part-time students in Engineering are more vulnerable to withdrawal than they are across the sector overall
- Country of Domicile - Non-EU students slightly less likely to withdraw but EU and UK slightly more likely to
- UCAS points - students with less than 340 UCAS points have elevated levels of withdrawal in Engineering

Reasons for leaving

- Different categories:
- Personal; Health; Finance; Academic Failure etc.
- 'voluntary withdrawal'
- 'required to withdraw'
- the majority of STEM disciplines, as well as the majority of social science disciplines, recorded higher percentages of students leaving for 'academic failure' reasons
- And more likely to 'require students to withdraw' - i.e. because of Academic Failure or Exclusion' - from BME backgrounds, men
- while the majority of Arts and Humanities disciplines recorded lower percentages of students leaving because they failed to progress
- And more likely to have students withdrawing for 'personal' reasons

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Academic failure

- Academic failure can be about
- Technical nature of subject - and habitual practices around these
- Some groups not engaging with academic and pastoral support services on offer when they need help
- Men, BME students, students form SEC 3-9 etc.
- Cultures and practices within disciplines around 'non-standard' or 'struggling' students

Whose responsibility is this?

- "Access without support is not opportunity" (Tinto 2008)
- "Higher education must accept that the implications of offering access to non-traditional students do not end, but rather begin, at the point of entry" (Bamber and Tett 2001)
- Mainstreaming message
- Not a minority issues: The majority of initiatives help the majority of students
- One size does not fit all so vary offer
- Think about presentation of initiatives

How do we support completion?

- Focus on First year
- Most students withdraw in year 1
- Estimated 25-45\% of students claim they considered withdrawal in Year 1
- Most students cite very early experiences as key in their persistence and satisfaction
- Research shows sense of 'belonging', fostered through 'engagement' is key to building early and lasting student satisfaction
- Most effective strategies start pre-entry ('preparedness') and/or on Day 1

Belonging and Engagement

- Belonging - students cite a sense of belonging to the course, department, school or university as very important
- Some 'non-standard’ students (e.g. BME; Local; Mature; Part-time) find this more difficult to establish
- Research indicates belonging is established through engagement
- With staff; peers; AND academic work
- Lack of sense of belonging comes second, as reason for withdrawal, only to disappointment with course

Academic Engagement

- Students cited "stimulating", "interactive", 'real world", "relevant", "problem-based", "enthusiastic" learning and teaching as key
- Diverse learning opportunities \& assessments
- Supportive relationships with staff and fellow students around learning also key
- Accessible staff - module tutors, personal tutors etc.
- Prompt responses to contact
- Clear and transparent criteria for assessments and prompt and constructive feedback
- Peer learning and assessment opportunities
- An 'academic home'

Monitoring

- Monitor:
- Engagement
- Attendance and assessment submission
- Identify at risk students and at risk times for withdrawal
- Retention and completion - consider exit interviews/focus groups/surveys
- Monitoring data regularly - hard even at national level data patchy and reporting differences suggested e.g. Vet Med no exclusions
- Ensure data are high quality and utilised fully
- Strategies are more effective if underpinned by data

Key issues for consideration

- Mismatch between knowing and doing
- Mainstreaming message
- Listen to students
- Be proactive in support and keep it going
- Leadership
- Managers/Leaders to show commitment
- To recognise and reward capacity in staff
- Is it good enough to match national averages?

Engineering here defined to include the following sub-disciplinary subject areas

- Engineering
- (F2) Materials science
- (H0) Broadly-based programmes within
- engineering and technology
- (H1) General engineering
- (H2) Civil engineering
- (H3) Mechanical engineering
- (H4) Aerospace engineering
- (H5) Naval architecture
- (H6) Electronic and electrical engineering
- (H7) Production and manufacturing
- engineering
- (H8) Chemical, process and energy
- engineering
- (H9) Others in engineering
- (J1) Minerals technology
- (J2) Metallurgy
- (J3) Ceramics and glasses
- (J4) Polymers and textiles
- (J5) Materials technology not otherwise
- specified
- (J6) Maritime technology
- (J7) Biotechnology
- 72
- (J9) Others in technology

Put HEA report link here

- https://www.heacademy.ac.uk/node/10293

www.st-andrews.ac.uk

