Report on the compatibility between:

The Subject benchmark statement for Engineering (QAA, 2000) and

The Engineering Graduate Output Standard (EPC, 2000) by a QAA/EPC Joint Working Group, Feb. 2002

> **Roger Johnson University of Warwick**

> > EPC Congress, 2002

References

(1) SARTOR 3 (Engineering Council, 1997)

(2) Frameworks for higher education qualifications, with descriptors (QAA, 2001)

(3) Quality assurance in H.E.- Proposals for consultation (HEFCE, 2001)

Compatibility Working Group

Roger Johnson

Richard Carter David Bonner

Tim Whiteley David Pollard Ian Freeston Gehan Amaratunga Nick Harris Lynne McAulay

(Warwick) Royal Academy of Engineering (Lancaster) EPC Committee,OSWG (Hertfordshire) QAABenchmarking, **OSWG Project Officer, EPC, OSWG QAA Benchmarking** (Surrey) (Sheffield) Engineering Council (Cambridge) EPC Committee **Assistant Director, QAA Project Officer, QAA**

QAA Subject benchmark statement for Engineering

- 6 categories:
- Mathematics
- Science
- Information technology
- Design
- Business context
- Engineering practice

4 aspects of each category:

- Knowledge and understanding
- Intellectual abilities
- Practical skills
- General transferable skills

One or more attributes for each aspect; total, 43

EPC Engineering Graduate Output Standard Ability to:

- transform existing systems into conceptual models
- transform conceptual models into determinable models
- use determinable models to obtain system specifications.....
- select optimum specifications and create physical models
- apply the results from physical models to create real target systems
- critically review real target systems and personal performance

Exemplar discipline-specific benchmarks provided, at several levels (BSc, BEng hons, etc.)

Criteria for mappings

E→Q 'a graduate with ability En will possess attribute Qm', or:
'possession of ability En implies some or all of attribute Qm'

Q→E 'a graduate will need attribute Qm in order to have ability En', or
'possession of attribute Qm would contribute to or fully demonstrate the ability En'

Mapping: reciprocity, R

 $R = \sum(\text{yes both ways}) / \{\Sigma(\text{yes both ways}) + \Sigma(\text{yes one way})\}$

Mathematics Science, Inf. Tech. Engineering practice Business context Design

Very high - well defined subject High - meanings insensitive to context High Intermediate Low - QAA treats as an entity; - EPC specifies abilities within the design process

Key skills - QAA: integral part of outcomes - EPC: the key ability statement

Conclusions

The two sets of Statements:

- are developed from different perspectives
- say very similar things in different formats
- are complementary in their aims, when read within their contexts
- can both provide course designers with reference points for development of academic programmes
- expect similar attributes for Maths, Science, and Inf. Tech.
- have differences that are apparent, not real, arising from:
 - methods of presentation (Eng. practice and Business context)
 - different approaches (Design)
- do not contradict each other are compatible

Next steps - until review of QAA benchmarks, after 2003

- Procedure for next cycle of external review is developed and comes into use
- Departments gain experience in the use of external reference points (QAA, EPC, SARTOR 3) in seeking assurance for their programmes and designing new ones
- Principal stakeholders determine which provides greater opportunity and flexibility:
 - formal coordination of the reference points, or
 - retention of their different but compatible perspectives