

Q1. In taking this approach (V Levels fixed at 360 GLH), are there any risks or issues we need to be aware of?

The Engineering Professors' Council (EPC) recognises the rationale for establishing V Levels at 360 guided learning hours (GLH) to support breadth and flexibility and welcomes the retention of a vocational route, especially into higher education (HE) engineering. However, some material risks emerge from fixing V Levels at the size of a single A level.

Engineering requires a depth of conceptual and practical learning that exceeds what can be effectively delivered within 360 GLH. Existing vocational engineering qualifications benefiting progression into higher education—including BTECs and Applied Generals—derive part of their value from extended project work, iterative practical development, and extended exposure to mathematical and scientific principles.

A 360-hour constraint may also reduce providers' ability to deliver meaningful practical and laboratory experience, especially in engineering, where access to workshops, specialist equipment, and iterative testing is essential to achieving robust applied learning outcomes. Where capital resources are so limited, the compression of content may lead to an over-emphasis on theory at the expense of authentic technical practice.

Restricting V Levels to a uniform (smaller) size risks constraining this depth and weakening progression pathways into engineering degrees and higher technical routes. Uniformity of size may introduce unintended disparities in preparedness between subject areas, this may undermine the stated objectives of coherence and parity of esteem.

The EPC recommends that the DfE consider a controlled flexibility mechanism allowing selected subjects (e.g., engineering and manufacturing) to exceed 360 GLH where evidence demonstrates that a larger footprint is required to maintain rigour and meet progression expectations. Without such a mechanism, the proposed structure may limit the effectiveness of V Levels in STEM progression and risk creating a qualification misaligned with employer and higher education needs.

Q2. Are there any particular issues for subjects or students that we need to be aware of as a result of not having medium-sized V Levels?

Yes. Unintended consequences from the removal of medium-sized qualifications include:

1. Loss of a proven progression route into engineering.

Medium-sized engineering qualifications (typically 540–720 GLH) currently serve learners who want to progress to engineering HE. Eliminating this size bracket risks

narrowing access to engineering pathways and diminishing the flexibility and access advantages that have been a structural strength of the current BTEC system.

2. Reduced support for students with lower prior attainment.

A substantial proportion of engineering students who progress from vocational routes—including BTEC and equivalent pathways—enter with lower GCSE profiles but demonstrate strong capability in applied contexts. Medium-sized qualifications offer an essential bridging function for such learners, allowing them to build confidence, accumulate applied experience and complete essential resits. Restricting to 360 GLH may reduce the scope for integrated support and hinder equity of access.

3. Narrower alignment with industrial practice.

Engineering employers value iterative project-based learning, exposure to multi-step design cycles and extended practical competencies. These are difficult to develop within a 360 GLH framework without sacrificing either breadth or depth. Medium-sized qualifications currently provide space for substantial project work, which directly supports employer expectations and higher education readiness.

4. Potential for negative impact on recruitment and diversity.

Evidence demonstrates that women, disadvantaged learners and under-represented minorities disproportionately enter engineering via vocational rather than academic pathways. Removal of flexible qualification sizes may disproportionately affect these groups, narrowing progression into engineering and undermining widening participation goals.

The EPC recommends that the DfE reconsiders the exclusion of medium-sized qualifications or establishes a clear evidence-based exemption pathway for subjects such as engineering that require additional GLH for valid and reliable delivery.

Q3. Which subject areas do you think are most appropriate for delivery through V Levels?

We are unclear how engineering as a V Level subject can be carefully scoped to ensure it remains broad and exploratory (e.g., engineering principles, design, applied physics, electronics fundamentals) within the current proposals. Engineering may need to be further divided to achieve this, which would require very careful consideration, in consultation with HEIs. Current standards do not really lend themselves to this approach.

Consideration should be given to how the design and presentation of any engineering V level may help to address underrepresentation by particular groups in further study in engineering and in engineering careers, most notably women. For example, reports suggest that course titles such as ‘Design & engineering’, ‘Applied Design’, ‘Engineering

& Sustainability' tend to attract more diverse interest than more traditional titles like 'Mechanical Engineering', 'Electrical Engineering' or 'Engineering' itself.

Q4. How could current information, advice and guidance (IAG) be improved to ensure that students are informed about subject selection and combinations?

PIAG must be enhanced, consistent and sector-informed as a precondition for successful implementation of the proposed pathways, including:

1. Nationally standardised guidance for STEM subject combinations.

Engineering progression frequently requires subject combinations involving mathematics, physics and applied technical subjects. V Level engineering must be presented alongside explicit guidance on pathways into higher education, including the minimum mathematical preparation need for success on engineering degree programmes (this is not uniform across the sector).

2. Early, mandatory progression mapping.

Students should receive structured guidance at Key Stage 4 (or earlier), including sector-specific progression diagrams illustrating preferred combinations for engineering HE entry. For this to be possible, HEIs will need clear mapping of content, including mathematical content and rigour.

3. Clear delineation of the differences between T Levels and V Levels.

Many students and parents currently conflate vocational and technical routes. The EPC recommends that the DfE should provide standardised comparative materials that outline:

- the exploratory purpose of V Levels,
- the occupational specialism of T Levels,
- the mathematical (and possibly also the creative) expectations of engineering pathways.

4. Clear information about availability

It is not fair to learners to encourage them towards pathways that are not available within the region owing to lack of provision by local schools and colleges or insufficient work experience opportunities. Not only does this require IAG that is able to present this information accurately, but it also underscores the importances of achieving widespread availability of V levels and T levels for them to be successful pathways that support learners and regional economies.

Q5. What factors should we consider when creating T Levels where there are currently no level 3 occupational standards?

1. Address limitations of existing occupational standards.

Existing apprenticeship Standards can be too narrow so this is an opportunity for the development of Standards through a more open and ongoing evolution, allowing greater input from learning providers before and after the establishment of the standards. Level 3 occupational standards were intended to be “employer-led” but instead they have often become “employer-dominated”, failing to focus on the wider needs of learners and their long-term goals. To address this imbalance, we need to pool the understanding of educators and of industry to T levels that appeal to prospective apprentices and learners, and provide them, as well as employers, with what they need. New T levels must be partnerships between employers, providers and learners themselves.

2. Higher education progression requirements.

Many T Level routes—especially those in engineering, digital and creative technologies—need to support progression to higher education as well as to work. In the absence of occupational standards, careful engagement with universities is required to ensure T Level content includes adequate mathematical, scientific and analytical depth as well as other skills to underpin HE study, especially in engineering and STEM fields.

3. Risk of premature specialisation.

Without established standards, defining a threshold occupational competence at level 3 may lead to unnecessary narrowing of learning. The EPC recommends that new T Level designs retain broad sector cores that avoid channelling learners into overly specific sub-fields prematurely.

4. Feasibility of delivering a substantial industry placement.

Where standards do not exist, there may also be insufficient employer infrastructure to host meaningful work placements at scale. The EPC recommends that T Levels be introduced only where placement sufficiency can be demonstrated and where placements are capable of contributing substantively to competency development.

21. Could any of the proposals have an impact – positive or negative – on people with any of the following protected characteristics?

Age • Disability • Race • Sex

Potential for negative impact on recruitment and diversity.

Evidence demonstrates that women, disadvantaged learners and under-represented minorities disproportionately enter engineering via vocational rather than academic pathways. T level design must carefully ensure these groups are not disproportionately affected, narrowing progression into engineering and undermining widening participation goals.

[I can add some BTEC data from the admissions study here].