COMPARISON OF MATHS IN ENGINEERING T LEVELS, ACCESS TO HE, AND A LEVELS

This is a curricular level mapping table, created by colleagues at Leicester University. It presents the gaps in terms of content area coverage between T Levels, Access to HE courses and A Levels. Leicester College is currently in the process of designing a 'bridging course' that T level students could take, so that their T level students would be more directly equivalent to their A level counterparts when it comes to Mathematics.

Subject	T levels Maths unit/topics	Access to HE (Additional Maths content)	A level Maths topics
Number	- Perform arithmetic operations on integers, decimal numbers and numbers in standard form using rules of arithmetical preference: brackets indices division multiplication adding and subtraction (BIDMAS). - Work to a specified number of decimal places or significant figures. - Carry out calculations using fractions, percentages, ratios and scale.	- Not on syllabus, content assumed	- I: Numerical methods
Algebra	- Simplify, factorise and manipulate equations to change the subject Solve simultaneous and quadratic equations. - Apply rules of indices. - Interpret and express changes in an engineering system from a graph (straight line, trigonometrical and exponential relationships). - Determine the equation of a straight line from a graph $(y=m x+c)$.	- Polynomial division. Factor theorem. - Curve sketching. - Algebraic fractions. - Simultaneous equations with quadratics.	- B: Algebra and functions - C: Coordinate geometry in the (x, y) plane
Logs and Exponentials	- Apply laws of logarithms (base 10 and natural) - problem-solving including problems involving growth and decay.	- Exponential graphs. Log graphs and use of log graph paper.	- F: Exponentials and logarithms
Sequences and series	- Determine numbers in a sequence using arithmetic and geometric progression, power series.	- Binomial expansion up to and including negative powers. Pascal's Triangle. Limit of a sequence. Small value expansion.	- D: Sequences and series
Calculus	- Determine standard differentials and integrals (basic arithmetic operations, powers/indices, trigonometric functions). - Determine standard differentials and integrals (basic arithmetic operations, powers/indices, trigonometric functions). - Calculate maximum and minimum values in engineering contexts using differentiation.	- Differentiation: product, quotient, chain rule, implicit differentiation. - Integration: areas under a curve and between curves. Mean and RMS. Volumes of solids of revolution. - Integration by substitution, integration by parts. - Simple differential equations.	- G: Differentiation - H: Integration
Trigonometry	- Use of Pythagoras' theorem and triangle measurement. - Circular measure including conversion between radians and degrees. - Application of trigonometric functions (sin, cos, tan), their common values, rules and graphical representation. - Determining dimensions of a triangle using sine and cosine rules. - Common trigonometric identities (sec, csc, cot).	- Analysis of sine waves. Sketching trig waves. Trigonometric identities. Trigonometric equations.	- E: Trigonometry
Statistics	- Calculation of range, cumulative frequency, averages (mean, median and mode) and standard deviation for statistical data in an engineering context. - Determination of probabilities in practical engineering situations.	- Statistical diagrams, including histograms, box and whisker, cumulative frequency curves. - Scatter diagrams, regression, and correlation. - Normal distribution. - Binomial distribution	- K: Statistical sampling - L: Data presentation and interpretation - M: Probability - $\mathrm{N}:$ Statistical distributions - 0: Statistical hypothesis testing
Functions		- Equation of a circle, including tangent and normal. - Inverse functions. - Composite functions. - Transformation of graphs. - Parametric equations. - Modular functions.	- F: Exponentials and logarithms
Vectors and Matrices	- Addition, subtraction and multiplication of matrices in engineering context. Use of vectors including addition, dot and cross product	- Binomial expansion up to and including negative powers. Pascal's Triangle. Limit of a sequence. Small value expansion.	- J: Vectors

