

IRON AND STEEL CEMENT OIL AND GAS CHEMICALS MINING **OTHER INDUSTRY**

Figure 1—Global CO2 emission

3. Aim & Objectives

The Aim:

• To develop a concrete mix design for masonry blocks that uses IBAA to reduce embodied carbon.

The Objectives:

- To identify the manufacturing process of IBAA and masonry blocks by attending site visits to Fortis IBA processing plant and mix It a masonry block manufacturing plant in Barking.
- To produce several mix design samples with different IBAA content by following requirements set by the British Standard in BS EN 12390.
 - To determine the mechanical properties of the concrete samples after 28 days.
- To evaluate the most appropriate IBAA replacement ratio which results in the greatest mechanical

5. Discussion

- The attempt of full replacement of cement in masonry blocks was done by Milling et al. (2020) as they replaced cement with Expanded Polystyrene (EPS) mortar.
- Determining that the bond strength of EPS mortars is two times stronger than cement mortar, but the compressive, flexural,
- and tensile strengths are higher in samples containing cement (Milling et al., 2020).
- Even though EPS masonry blocks have a lot of environmental benefits, they lack stronger mechanical properties which are essential for this product to be adopted through the construction industry.

• HM Government. (2021). Net Zero Strategy: Build Back Greener. <u>https://assets.publishing.service.gov.uk/ government/uploads/system/uploads/attachment_d_ata/file/1033990/net-</u> zero-strategy-beis.pdf

• Aggarwal, P., Aggarwal, Y., & Gupta, S. M. (2007). EFFECT OF BOTTOM ASH AS REPLACEMENT OF FINE AG- GREGATES IN CONCRETE. In ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING (Vol. 8, Issue1). www.SID.ir

<u>Mix design</u>

MIX DESIGN - w/c 0.5 - all Kg/m3 except admixture

Material	Control	0% IBA	10% IBA	30% IBA	50% IBA	100% IBA
w/c	0.50	0.50	0.50	0.50	0.50	0.50
Cement CEM2	330	330	330	330	330	330
Free water	165	165	165	165	165	165
FA	600	600	540	420	300	0
CA 4/10	1111	1111	1111	1111	1111	1010
IBA	0	0	60	180	300	600
Admx (l/m3)	10	10	11	5	7	25

• Brett. (2019, October). Everything You Ever Wanted To Know About Aggregates, Asphalt and IBAA. https:// www.brett.co.uk/news/everything-you-ever-wanted-to-know-aboutaggregatesasphalt-and-ibaa

• Miller, S. A., Habert, G., Myers, R. J., & Harvey, J. T. (2021). Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. In One Earth (Vol. 4, Issue 10, pp. 1398–1411). Cell Press. <u>https://doi.org/10.1016/j.oneear.2021.09.011</u>

British Standard Institution (2009). BS EN 12390-3 Testing Hardened Concrete. Compressive Strength of Test Specimens

• Stashwick, S., Singla, V., (2022). Cut Carbon and Toxic Pollution, Make Cement Clean and Green. NRDC. https://www.nrdc.org/experts/sasha-stashwick/cut-carbon-and-toxic-pollution-make-cement-clean- and-green

Table 1—Amount of material used for each IBAA replacement

