New! DATA BLOG: Grade inflation?

Earlier this month, the OfS published a new release of degree classification data, concluding that the growing proportion of the first and upper second class degrees awarded cannot be fully explained by factors linked with degree attainment. Specifically, the new analysis finds that in 2017-18, 13.9 percentage points’ worth of first-class degree attainment is unexplained by changes in the graduate population since 2010-11, an increase of 2.4 percentage points from the unexplained attainment in 2016-17. So we have it – grade inflation.

So, we’ve fished some unfiltered HESA data out of our archives, updated it, and looked at the distributions between first, second and third-class honours in engineering. And it seems that engineering paints a very different (worse?) picture than the sector as a whole. We award a notably higher proportion of firsts and, at a glance, a commensurately lower proportion of 2nd class honours. The proportion of 3rd class honours/pass awarded has come into line with the all subjects over recent years. It varies by engineering discipline, but nowhere is the proportion of firsts lower than for all subjects.

You might think, then, that high-level degree awards in engineering (firsts plus upper-class seconds) were nothing to write home about. But in 2016/17, at 77.3%, the proportion of high-level degree awards in engineering was one percentage point higher than for all subjects (and the difference has fluctuated around the one percent mark for the past ten years).

A simplified index plot, where 1 (the central y axis) represents all subjects, shows the propensity of a first in engineering is consistently greater than for all subjects (where the longer the bar, the greater the over-representation). The over-representation of firsts in engineering has shown a notable reduction over the past ten years and, at 1.4, was at its lowest yet in 2017/18. The overrepresentation of third-class honours in engineering visible from 2007/08 to 2015/15 has now been eliminated. You can see from this analysis that the over-representation of firsts is in fact greater than the combined under-representation of 2:1s and 2:2s.

So, what does this tell us? That the rise in higher degree classifications doesn’t apply to engineering? The number of high-level degrees in engineering has increased from 10,180 in 2007/8 to 18,690 in 2017/8, an increase of 83.6%. Proportionally, this has risen from 62.7% of all degree awards in engineering to 77.3%. That’s just marginally less proportional growth than the 14.9 percentage point difference for all subjects. But we are making progress.

Here’s the rub, who’s to say that rises in high-level degree classifications (which, sector-wide, cannot be explained by the data readily available – not my data) is necessarily a problem per se, or that is signals grade inflation? There are many reasons – not accounted for in the OfS statistical models – for degree outcome uplift, not least the massive expansion of student numbers in the last 20 years (leading to a less socially constrained pool of students); greater awareness of student support needs; the increased cost of higher education to students; more incentivised and focused students; and improved teaching in both schools and universities. Further, there is evidence that market forces; course enrolments; progression rules (e.g. progression from BEng to MEng requires achievement of marks for the first two or three years of study suggesting a minimum 2:1 standard, and therefore likely transfer of the best students away from the BEng); and the marking processes adopted by different subject areas impacts the proportion of upper degrees between subjects.

The evidence of improvement in teaching (and the development of pedagogy in UK universities) is much stronger than the evidence for grade inflation. As a discipline, this is what we must celebrate. Higher education (HE) is the gold standard in the delivery of engineering skills in the UK and has a strong international standing and reputation.

Let’s face it, the assumption that institutions need to account for grade inflation rather than educational improvement is perverse. Instead, let’s talk about and encourage innovation in teaching, learning and assessment, precisely what our New Approaches to Engineering Higher Education initiative (in partnership with the IET) aims to do. Earlier this year we launched six case study examples for each of the six new approaches, evidencing that the required changes can be achieved – are already being achieved – and we now want other institutions who have been inspired to come up with new approaches of their own to showcase their work at a New Approaches conference at the IET in November. More details will be circulated shortly.

Attribution: EPC analysis of HESA Student Qualifiers Full Person Equivalent (FPE) using Heidi Plus Online Analytics service.

Bid to host EPC Congress in 2020 or 2021

DEADLINE FOR SUBMISSIONS: 19th June 2019

Proposals are invited from higher education Engineering departments to host the Engineering Professors’ Council Annual Congress in 2020 or 2021.

‘Hosting the 2018 Engineering Professors’ Council Congress was a great way to showcase the University’s work to a wide range of experts in the field as well as to the professional bodies in engineering.  Our staff and students gained a lot from explaining their approach to engineering education and research, and we were also able to explore new collaborations to broaden the reach of our engineering activities.  We were delighted to welcome the EPC to Harper Adams and hope that other universities taking the opportunity act as the venue for the Congress will gain as much from the experience as we have.’
David Llewellyn, Vice-Chancellor, Harper Adams University (hosts of the 2018 Annual Congress) 

The Annual Congress is the flagship event in the EPC calendar, an opportunity for engineering academics from across the UK to come together to explore policy and practice and to network.

Download guidelines.

Download the form for submitting a proposal.

Each year, Congress is hosted by a different institution: 

The Congress usually takes place in April or May and lasts two days with a reception on the evening before the Congress formally starts.

  • 2016: The University of Hull hosted Congress as a prestigious addition to its preparations as European City of Culture. 
  • 2017: Coventry University hosted taking the opportunity to demonstrate the city’s close associated with transport engineering and manufacturing. 
  • 2018: Harper Adams University displayed its cutting edge status as a leading centre of agricultural engineering including automated farming and a range of off-road vehicles. 
  • 2019: UCL is host for this year’s congress where its proximity to the seat of Government has allowed an amazing line-up of high-profile speakers on a range of policy issues at a time of historic challenges. 

The host institution nominates a Congress Convenor who will become a member of the EPC Board for up to three years (2019-21 for the 2020 Convenor; 2020-22 for the 2021 Convenor) and who, with guidance from the EPC executive team, will lead the organisation of the Congress, including determining the themes and scope for the Congress, and the speakers and events. 

We are inviting bids to act as host for either of the next two years. You can specify one year or the other or apply without choosing a year. We will not select the same host for both years.

Download guidelines.

Download the form for submitting a proposal.


To submit a proposal, complete the form here and email it to Johnny Rich, Chief Executive, at j.rich@epc.ac.ukby 19thJune 2019. Johnny can also be contacted at the same address or by phone on 078-1111 4292 to discuss any aspect of Congress or the proposal process. 


What is expected from the host

The host institution (host) would be expected to provide:

  • an academic of suitable standing to act as Convenor and other staff resource as necessary to assist planning the Congress;
  • suitable function rooms such as a lecture theatre and smaller break-out rooms, as well as space for networking;
  • catering for the Congress;
  • possibly accommodation, particularly, for early career staff delegates to the Congress who may be provided free accommodation in student residences;
  • management of the Congress during the event;
  • financial accountability in accordance with the financial arrangements (see below).

There will be some support from the EPC executive, but it is advisable to ensure that the host can provide conference support staff as the smooth running of the Congress will primarily be the Convenor’s responsibility.

The Congress usually attracts up to 100 delegates, but the numbers have grown in recent years and the host should be able to provide for 150.


Selection process

The process for selection as host involves submission of your proposal to the EPC Board, which will conduct a vote. The basis for its decision is entirely at its discretion, but they will take into account issues such as the nominated Convenor, the suitability of the facilities, the arrangements for costs, the geographical suitability (although the EPC is keen not always to be restricted to big centres of population), the suggested activities such as Congress Dinner venue and other attractions, and other arrangements to ensure the smooth running of the Congress.

The host institution must be a member of the EPC. We would particularly welcome joint proposals from separate institutions to host jointly, such as two engineering departments at separate universities in the same city.


Financial arrangements

The suggestion for the financial arrangement between the EPC and the host forms part of the proposal. The EPC will seek to minimise its risk and, if possible, would like to generate a surplus from the event to contribute to its own in-house costs in running the Congress. However, the quality of the event and its appeal to members will be of greater weight in selecting the host institution.

That said, it may be helpful to provide as guidance the following arrangement that has been used in the past. The EPC would hope that the host would aim to meet at least this arrangement:

Costs may be divided into three categories as follows:

  • ‘External costs’: ie. costs that will genuinely have to be met, such as catering, external venue hire, student ambassadors, etc. The EPC would guarantee all these external costs and, if necessary, would pay them up-front. In any case, the EPC would be liable for these costs.
  • ‘Internal costs’: such as staff who are already employed by the host. The host would guarantee these costs and, in the event that registration income was insufficient to meet them, the host would be liable for them.
  • ‘Internal fees’: where the only cost to the host is a notional price that it sets internally – room hire, for instance. Once the two types of costs above have been met from revenue, 75% of any remainder may be used to defray the host’s internal fees and the other 25% will be due to the EPC to defray our internal costs and fees. After the host’s internal fees have been met, any surplus would be split equally.

The proposal should make it clear whether the host proposes to manages the bookings process and receive the registration fees or would prefer this to be handled by the EPC. If the host receives the fees, after the Congress it will be expected to provide a full account of income and expenditure (outlining the categories of expense as above, if that model is used). If the EPC receives the fees, the host may invoice the EPC for costs in accordance with the agreement. In either case, the host will be expected to agree with the EPC a full budget for the Congress at the earliest opportunity (and before substantial Congress planning) and would not be entitled to incur costs on behalf of the EPC outside the agreed budget without separate agreement.

While the host will be responsible for setting the registration fees and packages for delegates, these must be agreed in advance with the EPC. These should not include a more than 10% increase on equivalent packages for the previous year. A significant number of places for early careers staff (not more than 5 years in an academic post) should be made available at the lowest possible rate (including, ideally, some complimentary places).

In some years, the host has acted as a major sponsor of the event contributing to the costs or not passing on some or all of the costs it incurs. Any such support would be acknowledged and the EPC will seek to support the host’s objectives in sponsoring Congress. Any other sponsorship revenue will normally be retained by the EPC or used to offset the costs of running the Congress.

Guest blog: ‘If you were an engineer, what would you do?’

By Dr Susan Scurlock MBE – CEO of Primary Engineer

If you are one of the 125,000+ passengers per day heading through Gatwick South this summer, you may just spot your university’s Leaders Award prototype on the huge hoarding showcase.

Thanks to 49,000 school children aged between 3 and 19, 33 regional funders, three new national funders – Facebook, Network Rail and Gatwick Airport – and 19 university supporters (not forgetting the EPC’s support!) Primary Engineer is delighted to announce its ‘Wall of Fame 19’.

Gatwick Airport has today (August 13th) launched a three-week long exhibition of winners of the Primary Engineer Leaders Award ‘If you were an engineer, what would you do?’. The intention is to profile the university-builds from this and previous years and ask for a popular vote from the £2.6 million+ passengers walking through the terminal during the 3-week exhibition at the busiest time of year.

‘Wall of Fame 19’ showcases 11 inspirational prototypes of inventions designed by pupils from across the country and built by engineering students and technicians from universities in every UK region. Three working prototypes will be displayed – the Bicycle Sucker (built by Kingston University), the SMA Jacket (built by UCLan) and the Flat Pack Wind Turbine (built by Glasgow Caledonian University).

The Primary Engineer Leaders Award – “If you were an engineer, what would you do?” – links both primary and secondary schools with engineering professionals from across the sectors.  The competition promotes engineering to young people, with a 50/50 gender split for entries, and allows them to find the ‘engineer within’ by designing solutions to problems they have identified.

Primary Engineer is a not for profit educational organisation. Its approach brings engineering and engineers into primary and secondary classrooms and curricula; inspiring children, pupils and teachers through continued professional development, whole class projects, and the competition.

Dr. Susan Scurlock, MBE, founder of Primary Engineer said: “This exhibition at one of the most important travel hubs in the UK is testament to the commitment of commercial organisations, schools and universities who are all doing their bit to help pupils tap into their inner engineer. Each year I am astounded by the designs by pupils, some as young as 3, as they identify problems to solve which are important to them and in turn inspire engineers to build their solutions. We started by asking engineers to inspire children and have found that children inspire engineers. Perfect!” 

You don’t need to be passing through Gatwick to vote. The voting page is available at www.leadersaward.com/walloffame19/ and will feature each drawing, and photograph of each invention from this year and, in a separate section an opportunity to vote for previous years’ builds – we are looking to identify 2 winning builds. Please do vote and tweet “I have voted for my favourite design #walloffame19 @leadersaward!”.

Blending arts and sciences: gimmick or necessity?

The two culture of arts and sciences are like oil and water, but, asks Prof Mehmet Karamanoglu, could they be mixed? Indeed, perhaps it’s essential that we get them to learn from each other?


The higher education sector has been battling with the issue of introducing ‘creativity’ into engineering education for decades, as if this never exists in engineering programmes. 

Many institutions in the UK have tried to address this by creating collaborative programmes between departments of Engineering and Art & Design. The academic programme often sits in an Engineering department with modules from the Art & Design department, but less so the reverse. 

Over the past 30 years, I have seen such projects come and go and the end result has been the same – not a positive experience for students or staff involved. It goes without saying that there are also issues in the use of the terminology – we often talk about ‘Arts and Sciences‘, but what we really mean is ‘Design and Engineering‘. 

In an attempt to explain why such collaborations have not been successful, we often put this down to the fact that the two areas have their own cultures. This gives rise to the term you now see used by the media and politicians, the ‘Two Cultures‘: although the term has been used in academic debate for decades since C P Snow’s lecture of that name in 1959.

To look at this more closely, first we need to understand the obstacles that get in the way. Let’s call these two cultures, Camp A and Camp S.

Some key characteristics:

  • Camp A has a monopoly on the word ‘creative’ and no other camp can use it.
  • Camp S does not associate itself with the word ‘creative’ even though it practices it daily to solve problems. 
  • Camp A hates structures and rules, an inherent part of its often rebellious makeup.
  • Camp S cannot operate without structures and rules – operates systematically and hates change.
  • Camp A is territorial even within itself. Not really happy to share resources. Each of its constituents operates in an autonomous mode.
  • Camp S is territorial externally but unified within itself. 
  • Camp A are divergent thinkers, hate constraints, often not interested in the end result but the journey it takes and the experience of that journey. The destination is often irrelevant.
  • Camp S applies constraints too soon and arrives at a destination but may miss vital opportunities along the way. It operates too rigidly.
  • Camp A practices team teaching, often with contradictory views among its members.
  • Camp S operates in solo mode – one class, one master.
  • Camp A showcases their work and teaches by teams of staff. Each team owns their programme and has their own work space.
  • Camp S keeps their work preserved for themselves, does not show off.

Barriers to making the two camps work together:

  • Financial barriers – budgets that are devolved to individual camps is a key obstacle and will lead to effort being spent on counting pennies than producing useful work.
  • Having own physical facilities – ends up in duplication of resources, neither as good as they ought to be.
  • Lack of trust, value and respect in each other’s way of working.
  • Each camp retaining their work environments and students visiting each camp for their studies.
  • If this is an academic programme, as the approaches are so different, this will set some serious confusion for students, they will end up as academic schizophrenics.

My personal experience to crack this issue:

  • Do not force the two camps to come together artificially. It is akin to making an academic emulsion but with far worse side effects. So many try to create joint ventures or programmes, but blending the two cultures from two separate entities does not work as they always preserve their inherent make-up. Short term success is possible, but it is not sustainable. It relies heavily on individual personalities which often clash and so the success does not last. 
  • The only successful way that has stood the test of time is to grow a single but a mixed-culture camp from scratch. In the camp you will need staff with Camp A and Camp S characteristics, but the critical point is that they belong to the same camp.
  • There are no financial barriers – it is a single camp with a single budget. In fact, take the staff cost out of the camp’s budget to the next layer up and what is left is not worth arguing about.
  • There are no mine-and-yours physical resource issues. It is all ours
  • Most critically, Camp A and Camp S type staff will depend on each other to survive, learn to get on together and accept that there are different ways to do things for both. In other words, accept, value and respect each other.
  • The mixed-camp needs to be given time to evolve and this will take a while. The more urgent the survival becomes, the sooner the integration will happen. Once established, the new camp develops its own culture.

Having been through such an experience myself in 1996 at Middlesex University, it took four years to realise that operating as two separate camps would not work, so I started from scratch. Now, nearly two decades down the road from setting up the Design Engineering Department, there is no looking back, but I’ll probably always remain a recovering engineer.

To return to my opening point, it is not that we wanted to introduce ‘creativity’ into our engineering programmes, but rather it was actually about changing our practice and our way of doing things in order to acknowledge the evolving nature of the discipline, which has became practice-based. It was this that led to the creation of what I call the three pillars of practice-based learning in this new camp:

  • A curriculum model that recognises the appropriate teaching, learning and assessment approaches needed;
  • A physical Environmentthat supports the pedagogy adopted;
  • Staff resourcesthat can embrace the pedagogy adopted and operate within the environment created.

Prof Mehmet Karamanoglu is Professor of Design Engineering and Head of the Department of Design Engineering and Mathematics at Middlesex University, London.

Augar arrives

EPC Chief Executive, Johnny Rich reports on the long-awaited Review of Post-18 Education Funding in England and the possible implications for engineering in HE.

At over 200 pages and featuring 50 recommendations, the Augar Review will take some time to chew, let alone digest and (to follow the nutritional metaphor perhaps a couple of steps too far) turn into a burst of energy or perhaps a pile of waste. However, at the time of writing, the report has now been out for one day, so here’s my quick take on some of the most important points for EPC members.

The fee cut: As has been widely reported and trailed before publication, the Review recommends a cut in the headline tuition fee from £9,250 to £7,500. Obviously, for most engineering departments, that’s way below the per student cost of delivery.

However, the Review also recommends that the total investment in the HE sector remains the same – topped up by teaching grants – albeit frozen for the next few years. It argues that this will be manageable because there is a demographic uplift in the number of 18-year olds coming until 2025. The increased economies of scale should mitigate the freeze. The comfort is a little cold though. There are potential drops in international and EU students following the reputational fallout from Brexit (even if Brexit itself never happens) and, as the Review points out, too many universities are basing their finances on projections of growth of which at least some must, arithmetically, prove to be over-optimistic.

The Review does not envisage that top-up grants are evenly spread. Courses with good employment outcomes – measured, for the most part, in terms of salaries – would receive far bigger top-ups than those that result in less easily measured value. This appears to be good news for Engineering, which is specifically cited as a discipline where there are skills shortages and costs are recognised as high, and bad news for Creative Arts subjects which get a lot of stick for producing a lot of graduates without clear earnings premiums.

But it’s not as simple as that. Unless the top-up for Engineering is high enough to reflect the additional cost of teaching, we may have a situation where cheaper courses can still yield a margin on the basis of lower fees, but expensive ones not only cannot contribute to institutional overheads, but they can’t even pay for themselves. The commercial pressure will be to axe the expensive courses and do exactly the opposite of what the Review hopes to achieve.

Levels 4 and 5: Large parts of the Review report are devoted to a raft of measures to better support Further Education, including capital investment, access to loan-style tuition funding for level 4 and 5 qualifications on a par with the basic annual ticket price for degrees (£7,500), and a lifelong learning account (equivalent to the cost of four years of university study) allowing students to build up qualifications throughout their lives in modular chunks.

The Review does more to break down distinctions between HE and FE institutions rather than build them up, so, for universities that already offer qualifications at different levels, or those that decide to, there are opportunities here to build a diverse and financially sustainable offering.

Interim qualifications: Part of the drift away from seeing a level 6 (degree-level) qualification as the gold standard of post-18 education is the recommendation that university degrees should all include an interim qualification after the first or second year. The idea is to combat drop-outs – or at least to combat the stigma attached to dropping out without anything to show for it but debt.

It’s hard to think of significant objections to this recommendation, so universities need to start thinking about how it will work. For Engineering courses, it’s raises a number of particularly thorny issues. Would an interim qualification be accredited? How would this work in an integrated masters course?

Disadvantaged students: As well as topping up fees for expensive courses, the Review proposes a significant shift of top-up funds towards institutions that admit more students from disadvantaged backgrounds.

The reason for this is presented not merely as social engineering, but in recognition of the fact that, statistically speaking, for a host of reasons, it costs more to teach these students than their more affluent peers.

How you define ‘disadvantage’ is discussed and, while not completely shredding the POLAR metrics, the Review clearly thinks other alternatives may be better. There is no recognition of the fact that underrepresentation in HE takes different forms in different disciplines.

Engineering has particular challenges attracting women, BAME students and those from lower socio-economic groups. It has less of a problem attracting state-educated males than most subjects. Whatever intersectional measures of disadvantage are used may have unintended repercussions for Engineering. As with the threat of reduced fees, this well-intentioned recommendation may create reasons to axe Engineering courses and departments to massage the numbers of a university as a whole.

Foundation courses: In a move to support students from under-represented groups, some Engineering departments have introduced Foundation years as preparation for a full degree. The Review recommends that these be dropped altogether in favour of Access to HE diplomas, which currently are funded at a lower level. In other words, they want to stop universities from using Foundation years to ‘game’ an extra year of higher funding.

In a report where the arguments are usually clear and well evidenced (even if they don’t always reach the right solution), this recommendation seems unfounded and – I put my hands up – I just don’t understand how it achieves anything given that I would have thought Access to HE courses would, under the Review other proposals now attract the same funding as Foundation years. Meanwhile, it shuts down an access route to Engineering that some universities have found is a useful way of ensuring degree success for some students – such as those with BTECs or lower attainment in, say, maths or physics.

Entry requirements: Before the publication of the Review, there was lot of kite-flying (not least from Education Secretary Damian Hinds) about the possibility of a de facto cap on student numbers by saying that only those with equivalent to three Ds or above at A level would qualify for financial support.

There are very few students studying Engineering with entry grades that low. Those that are have usually gained their place on the basis of some particular exception. This exemplifies the problem with this policy: the few students it would have blocked are just the ones where investment in their education might have yielded the biggest difference to their prospects.

That’s presumably why the Review has not come out fully in favour of the idea. Yesterday, the Universities Minister Chris Skidmore tweeted his delight that it had “never featured” in the report. Given the section titled “A minimum entry threshold” on p99, the whole of the next page and a half devoted to discussing how such a threshold might be contextualised and then recommendation (3.7) on the next page, I’d say “never featured” is a bit of an overstatement.

Still, for now, that idea has gone away. Instead, universities are fairly firmly warned to put their recruitment business in order or else. Low offers must only be used judiciously and if ‘conditional unconditional’ offers aren’t curbed, then the Review has spelt out that the Government should step in. (Whether, under the Higher Education & Research Act, it has the power to do so without legislation is doubtful though.)


That’s just a few takeaways. No doubt I will kick myself for forgetting to mention dozens of others, but I will update EPC members further as the debate progresses.

One thing to add though is a comment on the status of these recommendations. The Augar Review is a high-profile independent report to the DfE as part of a government review. It is not a White Paper (ie. a plan for legislation). It is not even a Green Paper (a consultation document). It is just a series of considered ideas based on trying to come up with good solution rather than politically motivated ones.

There is every possibility the Review could be ignored, not least because Theresa May – principal sponsor of the exercise – is about to become a rather embarrassing footnote in political history. She put Damian Hinds in post and, although he’s one of the few Tory MPs who seems not to have designs on becoming prime minister, there’s no guarantee he will hang around in his job long enough to put the recommendations into action.

Putting them into action is easier said than done. Some of the recommendations would require legislation and whenever bills relating to student finance come to the Houses of Parliament their path tends to be rockier than a quarry dump-pile. Moreover, bear in mind party politics is so chaotic at the moment that the only vote anyone has dared put before the Commons for the past few weeks was on the anodyne issue of wild animals in circuses (although that is an apt metaphor).

All of this is why yesterday’s launch of the Review was introduced by Mrs May herself. She wanted to send a clear message to her successor that they should see this through. It’s her last ditch attempt at scribbling something, anything, on her CV under the heading of ‘achievements in role’.

The leadership contenders may or may not adopt these ideas. The chances of them engaging with them in detail are slim, but there are two main reasons they will want to do something, even if it’s not this.

Firstly, doing nothing is almost not an option because the Office for National Statistics ruled in December last year that the current accounting mechanism for student loans must change to reflect more accurately what they actually cost the public purse. This means we are entering the political bartering of a Comprehensive Spending Review with higher education costing tens of billions more than planned in terms of the public deficit. It’s all an accounting con, but it matters in terms of perceptions and economic confidence.

Secondly, Labour’s pitch at the 2017 election to axe fees altogether was seen as a major cause of the supposed ‘youthquake’ of support that wiped out May’s majority. Politically, it would be hard for any new Conservative leader to go into the next election – which could happen by accident at almost any time – without any response whatsoever to Labour’s offer.

That said, despite a lot of good reasoning and a host of suggestions at least some of which are very sensible, it’s hard to see how anything in the Augar Review is the vote-winning miracle that polls suggest the Conservatives need right now. After all, if £9,250 a year was off-putting, £7,500 with a more regressive repayment mechanism isn’t exactly anyone’s idea of a bargain.

Guest blog: Compensation and condonement – incoming rules for accredited degrees

By Catherine Elliott, Engineering Council

The Engineering Council has updated its policy on compensation and condonement[1], which has resulted in new rules being put in place. The key consideration in these rules is to ensure that graduates of accredited engineering degree programmes have met all the learning outcomes specified in the Engineering Council’s Accreditation of Higher Education Programmes (AHEP).

When making decisions about the potential accreditation of a university programme, Professional Engineering Institutions (PEIs) are required to consider the awarding institution’s compensation and condonement policy as part of the assessment.

These rules have been published on the Engineering Council website, with guidance on these changes expected in the coming months, which will provide additional information to enable Higher Education Institutions (HEIs) to prepare.

The anticipated timeline to implement these changes is outlined below:

  • The rules should be implemented for new cohorts starting from September 2022.  The rules will only apply to intakes from that date and not to existing students. 
  • From September 2019, HEIs will be required to create a plan ensuring their regulations conform to the new rules by September 2022. Programmes reviewed on visits from September 2022 will not be accredited if the HEI regulations are not up to date with the rules on compensation and condonement.
  • From September 2022, PEIs will check all HEIs have complied as part of their regular visit schedule.

If you have any queries on compensation and condonement, please contact the Engineering Council at accreditation@engc.org.uk


[1] There are no consistent definitions of the terms ‘compensation’ and ‘condonement’ across UK universities, and they are often confused. The Engineering Council therefore adopts a similar definition to that used by QAA and HEA, as follows:

The Engineering Council defines compensation as: “The practice of allowing marginal failure (i.e. not more than 10 percentage points below the nominal pass mark) of one or more modules and awarding credit for them, often on the basis of good overall academic performance.”

The Engineering Council defines condonement as: “The practice of allowing students to fail and not receive credit for one or more modules within a degree programme, yet still qualify for the award of the degree.”

EPC Elections 2019

NOMINATIONS FOR ELECTION TO THE BOARD OF THE ENGINEERING PROFESSORS’ COUNCIL

Honorary Treasurer, Secretary and four elected Ordinary Board Members

On the occasion of the AGM, the period of office of the Honorary Treasurer, Professor Jim Yip, and of the Secretary, Professor David Harrison, will both come to an end. That will result in vacancies for both posts for a term of office of two years from May 2019 until the EPC Annual General Meeting in 2021. Four elected positions for members of the EPC Board shall also fall vacant.

Elections (if required) shall be held during the 25th Annual General Meeting of the Engineering Professors’ Council on 14th May 2019, which will be held during the EPC Annual Congress 2019 at UCL.

Any Individual Member of the EPC wishing to stand for this position should indicate their intention using this form. Nominations must reach Johnny Rich, Chief Executive, at j.rich@epc.ac.uk no later than 09.00 on Wednesday 8th May 2019. Johnny is happy to discuss the role impartially and in confidence. You can contact him at the same email or on 078 1111 4292.

Candidates should be nominated a Council Member (an individual nominated by an Institutional Member as one of its representatives) and seconded by another Council Member by the deadline specified in the Notice of the Annual General Meeting using the nomination form.

This completed form will be circulated to those attending the AGM at which, in the event of more than one candidate, each Council Member will be invited to vote for their chosen candidate (by secret ballot). The candidate with the highest number of votes is elected. In the event of a tie, the President shall have the casting vote. 

Only individuals from Institutional Members (i.e. universities) that have paid their subscription for the current academic year, by at least two weeks before the AGM, are eligible to stand for election and/or vote at the AGM.

Teaching students to learn for themselves

Dr Sunny Bains, author of a new book on emerging technologies, examines how to support students to make use of the technical literature and to look beyond it.

The best engineers can be thrown in at the deep end of a new problem and research their way out. That’s part of the ethos of combining conventional academic courses with more practical, project-based learning. 

This approach forces students to discover constraints and compromises for themselves, optimizing their solutions as well and as creatively as they can, rather than solving well-constructed questions with tractable answers. Often, they do this work as part of a group. 

Deep-end problem-based learning ticks a lot of boxes: teamwork, creativity, critical thinking, application of technical skills, and so on.

Unfortunately, what we choose to teach students formally before we launch them into these projects is often insufficient. 

Yes, they’re trained in the deep technical skills that we think they’ll need, and (if they’re lucky) even some of the transferable onesBut what we don’t normally teach them is how to systematically and thoroughly research a topic. 

More specifically, we don’t teach them where to look for answers to questions. Partly, this is because we are academics: to us the answer is usually a technical paper, possibly a book, and we’re so used to looking for these that we don’t think twice about it.

But to use technical literature first you need to be able to search for and find what you need effectively. Even if you do find the papers you think you’re looking for, you may not yet have the expertise to read them. This is especially, but not exclusively, true for undergraduates. Further, once you’re in industry, journals and proceedings aren’t going to alert you to what your competition (possibly start-ups in stealth mode) are up to. 

If I had to prioritize, my top three suggestions for helping students to research a new subject would be as follows: keywords, the technical press, and patents. Although you might think that the current generation (which grew up with the iPhone, never mind the internet) would be more expert at finding material on the web than we were, that’s far from true. Just a few minutes teaching them some basics can go a long way.

Keywords are key

First, we all know that keywords are critical to all kinds of searches, including the technical literature, but what students don’t realize is how creative you have to be in using them. Very similar ideas often have different names in different fields, and searching for the wrong terms can miss most of the most important information. 

Students need to know to gather lots of different keywords from the various sources, and then to search for them in different combinations to find the information they need.

Journals and magazines

Next, students should know that not all useful information has to be of the highly-technical variety. A good way of getting into a new field is to find news that’s readable but still contains specialist information. This might be in publications aimed at an industry (like Water and Wastewater Treatment), a society (like E&T Magazine), or even a popular science market like Wired.

A good place to start for articles like this is Engineering Inspiration, a website we set up at UCL (and free for all) that brings together interesting technical articles from across the web (we have 50K+ articles online to date). Reading enough of this kind of material can do wonders to set the context for a project: with the constraints and values of the industry coming through in every story.

Patently clear

Finally, patents (which are now freely available to search on the web) are a great source of information because they cover a lot of technology that is too commercially sensitive to be published in other forums. 

It’s true that they’re completely unreadable, but by following the breadcrumbs of who has filed what patent it’s possible to figure out who is doing roughly what. With a little imagination, engineers can pull together clues based on what the inventors did before the patent, who they’re working with now, what theydid before, and so make an educated guess about what is in the pipeline.

Of course, there are many more sources to look at: conference programmes can be even more informative than proceedings; books (remember books?) can be hugely helpful if used well, and peoplecan provide insights and feedback that no written source ever could… 

The main thing is not to assume that students will somehow learn their research skills by osmosis. We forget how much we take for granted after a lifetime of information-gathering: by giving our students just a little bit of formal instruction on how to do this critical task, we can make them hugely more productive.

Dr Sunny Bains (see sunnybains.com) is the author of Explaining the Future: How to Research, Analyze, and Report on Emerging Technologies.She teaches engineering and physical sciences students at University College London.

EPC Congress 2019 Bookings

Please read the information below to help you select the correct ticket type.

All tickets include:

  • Monday evening social
  • All sessions and events on Tuesday
  • Congress dinner at Senate House on Tuesday evening
  • Congress programme on Wednesday (ending at 2.00pm).

Accommodation is NOT included. A list of options to suit different budgets is available here.

Early bird booking rates – giving you £50 off the full congress package (or £30 for the already heavily discounted early career staff rate) – end 8th April.

TICKET TYPES

Full Congress: EPC member

Most UK universities with an engineering department or faculty are members of the EPC. To check whether your institution is a member, please click herePartner organisations may also attend Congress at member rates. This is a discounted rate.

Full Congress: EPC non-member

Most UK universities with an engineering department or faculty are members of the EPC. To check whether your institution is a member, please click herePartner organisations may also attend Congress at member rates. If you are not a member, you are still very welcome. Please select this rate.

Full Congress: Early career staff

Any academic staff at EPC member institutions who have been employed in academic roles for no more than five years qualify for this rate. Additionally, there are 10 free spaces available for ECS, a maximum of one free space per university. Apply for your free space here.

Engineering higher education faces multiple threats, according to new landmark report

A worrying convergence of challenges, outlined in a high-profile report published today, is threatening the vital role of higher education in supporting the UK’s engineering sector, a critical part of the country’s economy.

Led by the Royal Academy of Engineering and with significant input from the Engineering Professors’ Council (EPC), Engineering Skills for the Future – the 2013 Perkins review revisited has found key barriers for addressing the annual shortfall of 59,000 engineers and technicians in the UK workforce.

In the context of higher education, the post-18 education funding review, falling research revenues and international student numbers after Brexit, proposals in the Immigration White Paper, and the challenge to diversify the intake of students are all cited as issues that could undermine the supply of essential engineering graduates into the UK labour market.

The report highlights how the whole education system cannot produce enough engineers to support the UK economy, especially with increasing reliance on home-grown talent post-Brexit.

The report, produced by Education for Engineering, an engineering education and skills policy body, makes a raft of recommendations for government including relaxing the rules on how the Apprenticeship Levy may be spent, addressing the shortage of skilled teachers, and ensuring engineering higher education is well resourced and attractive to applicants in the event of changes to student funding.

The 2013 Review of Engineering Skills by Professor John Perkins FREng, commissioned by government, was a landmark report, the first to review engineering education from primary schools to professions. Engineering Skills for the Future – the 2013 Perkins review revisited is an independent report from the engineering profession.  It revisits the challenges highlighted in the original Perkins Review, and sets out a roadmap for government and the engineering community that identifies urgent priorities for action. 

The report specifically recommends that the UK must remain part of international partnerships to continue to attract students from the EU and all over the world and should extend opportunities for graduates to stay and work in the country after their studies. It also emphasises the need for top-up grants for engineering courses in the event of any cuts to tuition fees.

Also relevant to higher education, is the report’s call for an urgent review of post-16 academic education pathways for England. Young people should have the opportunity to study mathematics, science and technology subjects along with arts and humanities up to the age of 18. The report recommends this to encourage more students from a broader range of backgrounds into further and higher engineering education. The current system runs the risk of narrowing education choices and potentially closing the door to technical and creative careers.

Professor John Perkins CBE, Fellow of the Royal Academy of Engineering, who led this report, said:

“Engineering is enormously valuable to the UK economy but suffers from a chronic shortage of skills, let down by the leaking pipes of the education system that removes the option of an engineering career for too many young people at every stage of their education. There has been scant progress in addressing the UK’s engineering skills gap since I first reviewed the education system five years ago, but the government’s Year of Engineering campaign in 2018 has shown what can be achieved with concerted and coordinated action. As a profession, we must now continue to raise the profile of engineering nationally and leverage this to galvanise change for the better.

“We need to broaden the curriculum for post-16 education, value technical education on a par with academic progression, unlock more potential from the Apprenticeship Levy, and guarantee affordable, fair and inclusive access to engineering degrees. These changes have the potential to pay dividends in the years to come for young people, the economy, and society.”

Professor Sarah Spurgeon OBE, President of the Engineering Professors’ Council, said:

“We wholeheartedly welcome this report and are proud to have contributed to its findings. The chain that links the development of tomorrow’s engineers through schools, colleges, universities and into the workplace is broken. This is not just a problem for UK engineering, but for the whole economy. Engineering is at the heart of the Industrial Strategy and Brexit will bring huge challenges in terms of skills shortages.

“As the seedbeds of innovation, our university engineering departments have been particularly successful in attracting talent from all over the world. International students make up 40% of our students and they contribute hugely to our education system and businesses in so many ways.”